四川省遂宁市船山区第二中学2023-2024学年数学九上期末统考模拟试题含答案
展开
这是一份四川省遂宁市船山区第二中学2023-2024学年数学九上期末统考模拟试题含答案,共9页。试卷主要包含了如图,等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )
A.B.C.D.
2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,若∠BAC=20°,则∠ADC的度数是( )
A.90°B.100°C.110°D.130°
3.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
4.如图:已知AD∥BE∥CF,且AB=4,BC=5,EF=4,则DE=( )
A.5B.3C.3.2D.4
5.下列一元二次方程中两根之和为﹣3的是( )
A.x2﹣3x+3=0B.x2+3x+3=0C.x2+3x﹣3=0D.x2+6x﹣4=0
6.如图,网格中小正方形的边长为1个单位长度,△ABC的顶点均在小正方形的顶点上,若将△ABC绕着点A逆时针旋转得到△AB′C′,点C在AB′上,则的长为( )
A.πB.C.7πD.6π
7.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是( )
A.B.C.D.
8.点在反比例函数的图像上,则的值为( )
A.B.C.D.
9.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )
A.1:2B.1:4C.1:5D.1:6
10.如图,
点A、B、C是⊙O上的三点,∠BAC= 40°,则∠OBC的度数是( )
A.80°B.40°C.50°D.20°
二、填空题(每小题3分,共24分)
11.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为______________.
12.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.
13.如图,AB是⊙C的直径,点C、D在⊙C上,若∠ACD=33°,则∠BOD=_____.
14.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.
15.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)
16.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是_____cm.
17.如图,已知函数y=ax2+bx+c(a1)的图象的对称轴经过点(2,1),且与x轴的一个交点坐标为(4,1).下列结论:①b2﹣4ac1; ②当x2时,y随x增大而增大; ③a﹣b+c1;④抛物线过原点;⑤当1x4时,y1.其中结论正确的是_____.(填序号)
18.若方程的解为,则的值为_____________.
三、解答题(共66分)
19.(10分)一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有1、2、3、4四个数字(每个小球只印有一个数字),小华从布袋里随机摸出一个小球,把该小球上的数字记为,小刚从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为.
(1)若小华摸出的小球上的数字是2,求小刚摸出的小球上的数字是3的概率;
(2)利用画树状图或列表格的方法,求点在函数的图象上的概率.
20.(6分)如图,,,,.求和的长.
21.(6分)如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cs70°=0.34,tan70°=2.75)
22.(8分)意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.
八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.
整理数据:
分析数据:
应用数据:
(1)由上表填空:a= ;b= ;c= ;d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?
(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.
23.(8分)正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=CF+AE;
(2)当AE=2时,求EF的长.
24.(8分)抛物线与轴交于两点(点在点的左侧),与轴交于点.已知,抛物线的对称轴交轴于点.
(1)求出的值;
(2)如图1,连接,点是线段下方抛物线上的动点,连接.点分别在轴,对称轴上,且轴.连接.当的面积最大时,请求出点的坐标及此时的最小值;
(3)如图2,连接,把按照直线对折,对折后的三角形记为,把沿着直线的方向平行移动,移动后三角形的记为,连接,,在移动过程中,是否存在为等腰三角形的情形?若存在,直接写出点的坐标;若不存在,请说明理由.
25.(10分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
26.(10分)如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 (只需要填一个三角形);
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、D
4、C
5、C
6、A
7、B
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、x1= -1, x2=1
12、1
13、114°.
14、1
15、
16、1
17、①④⑤
18、
三、解答题(共66分)
19、(1);(2)
20、,.
21、河流的宽度CF的值约为37m.
22、(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).
23、(1)见解析;(2)1,详见解析.
24、(1);(2),最小值为;(3)或或或或.
25、(1) (2)点P的坐标;(3)M
26、(1)△DFG或△DHF;(2).
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
七年级
0
1
0
a
7
1
八年级
1
0
0
7
b
2
平均数
众数
中位数
七年级
78
75
c
八年级
78
d
80.5
相关试卷
这是一份49,四川省遂宁市船山区2023-2024学年九年级上学期期末数学试题,共22页。
这是一份四川省遂宁市遂宁市第二中学2023-2024学年九上数学期末复习检测试题含答案,共8页。试卷主要包含了已知,则下列各式中不正确的是,国家规定存款利息的纳税办法是等内容,欢迎下载使用。
这是一份四川省广安市代市中学2023-2024学年九上数学期末统考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知2a=3b等内容,欢迎下载使用。