四川省达州市大竹县2023-2024学年九上数学期末学业质量监测试题含答案
展开
这是一份四川省达州市大竹县2023-2024学年九上数学期末学业质量监测试题含答案,共8页。试卷主要包含了已知函数等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.若关于x的一元二次方程有实数根,则实数k的取值范围为
A.,且B.,且
C.D.
2.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为( )
A.(-,1)B.(-1,)C.(,1)D.(-,-1)
3.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F别是AM、MC的中点,则EF的长随着M点的运动( )
A.不变B.变长C.变短D.先变短再变长
4.抛物线关于轴对称的抛物线的解析式为( ).
A.B.
C.D.
5.对于二次函数y=﹣2x2,下列结论正确的是( )
A.y随x的增大而增大B.图象关于直线x=0对称
C.图象开口向上D.无论x取何值,y的值总是负数
6.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6B.12C.24D.不能确定
7.已知函数:(1)xy=9;(2)y=;(3)y=-;(4)y=;(5) y=,其中反比例函数的个数为( )
A.1B.2C.3D.4
8.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边落在对角线 BD上,点A落在点A' 处,折痕为DG,求AG的长为( )
A.1.5B.2C.2.5D.3
9.如图,在中,点,分别在,边上,,,若,,则线段的长为( )
A.B.C.D.5
10.已知关于的一元二次方程有一个根为,则另一个根为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.若x=是一元二次方程的一个根,则n的值为 ____.
12.如图,反比例函数的图象与矩形相较于两点,若是的中点,,则反比例函数的表达式为__________.
13.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.
14.已知函数y=kx2﹣2x+1的图象与x轴只有一个有交点,则k的值为_____.
15.已知和时,多项式的值相等,则m的值等于 ______ .
16.已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是___.
17.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.
18.已知,关于原点对称,则__________.
三、解答题(共66分)
19.(10分)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现:当α=0°时,的值为 ;
(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;
(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长 .
20.(6分)如图,已知直线与两坐标轴分别交于A、B两点,抛物线 经过点A、B,点P为直线AB上的一个动点,过P作y轴的平行线与抛物线交于C点, 抛物线与x轴另一个交点为D.
(1)求图中抛物线的解析式;
(2)当点P在线段AB上运动时,求线段PC的长度的最大值;
(3)在直线AB上是否存在点P,使得以O、A、P、C为顶点的四边形是平行四边形?若存在,请求出此时点P 的坐标,若不存在,请说明理由.
21.(6分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:
(1)在地面上选定点A, B,使点A,B,D在同一条直线上,测量出、两点间的距离为9米;
(2)在教室窗户边框上的点C点处,分别测得点,的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出的长.
(可能用到的参考数据:sin35°≈0.57 cs35°≈0.82 tan35°≈0.70)
22.(8分)如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且=,过点E作EF⊥BC于点F,延长FE和BA的延长线交与点G.
(1)证明:GF是⊙O的切线;
(2)若AG=6,GE=6,求⊙O的半径.
23.(8分)如图,AB是半圆O的直径,C为半圆弧上一点,在AC上取一点D,使BC=CD,连结BD并延长交⊙O于E,连结AE,OE交AC于F.
(1)求证:△AED是等腰直角三角形;
(2)如图1,已知⊙O的半径为.
①求的长;
②若D为EB中点,求BC的长.
(3)如图2,若AF:FD=7:3,且BC=4,求⊙O的半径.
24.(8分)如图,已知抛物线与轴相交于、两点,与轴相交于点,对称轴为,直线与抛物线相交于、两点.
(1)求此抛物线的解析式;
(2)为抛物线上一动点,且位于的下方,求出面积的最大值及此时点的坐标;
(3)设点在轴上,且满足,求的长.
25.(10分)某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?
26.(10分)如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.
(1)求证:AB2=AE·AD;
(2)若AE=2,ED=4,求图中阴影的面积.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、A
4、B
5、B
6、B
7、C
8、A
9、C
10、B
二、填空题(每小题3分,共24分)
11、.
12、
13、8
14、0或1.
15、或1
16、m>1
17、3
18、1
三、解答题(共66分)
19、(1);(2);(3)7或1.
20、(1);(2)当时,线段PC有最大值是2;(3),,
21、CD的长为21米
22、(1)见解析;(2)1
23、 (1)见解析;(2)①;②;(3)
24、(1);
(2)当时,取最大值,此时点坐标为.
(3)或17.
25、每辆车需降价2万元
26、 (1)见解析;(2) 2π-3.
相关试卷
这是一份2023-2024学年林芝九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了的倒数是,点P,关于的一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份2023-2024学年四川省成都树德中学九上数学期末学业质量监测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份四川省达州市大竹县2023-2024学年八上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是假命题的是,点P关于y轴的对称点的坐标是等内容,欢迎下载使用。