2023-2024学年贵州省铜仁市松桃县数学九年级第一学期期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是( )
A.B.C.D.
2.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
A.B.C.且D.且
3.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2)B.(3,1)C.(2,2)D.(4,2)
4.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是( )
A.nB.n-1
C.4nD.4(n-1)
5.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是( )
A.B.C.△ADE∽△ABCD.
6.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是( )
A.4B.3C.2D.1
7.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A.DE=EBB.DE=EBC.DE=DOD.DE=OB
8.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为( )
A.40°B.45°C.60°D.80°
9.如图,该几何体的主视图是( )
A.B.C.D.
10.如图,平面直角坐标系中,,反比例函数的图象分别与线段交于点,连接.若点关于的对称点恰好在上,则( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是,则黄球个数为__________.
12.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.
13.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.
14.若二次函数的图象开口向下,则_____0(填“=”或“>”或“<”).
15.关于x的方程的根为______.
16.在一块边长为30 cm的正方形飞镖游戏板上,有一个半径为10 cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.
17.写出一个过原点的二次函数表达式,可以为____________.
18.将抛物线向右平移2个单位长度,则所得抛物线对应的函数表达式为______.
三、解答题(共66分)
19.(10分)为培养学生良好的学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,请根据图表中提供的信息,解答下列问题:
(1)本次抽样共调查了多少名学生?
(2)补全统计表中所缺的数据.
(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名.
20.(6分)如图,在和中,,点为射线,的交点.
(1)问题提出:如图1,若,.
①与的数量关系为________;
②的度数为________.
(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.
21.(6分)国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.
(1)今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?
22.(8分)阅读下面内容,并按要求解决问题: 问题:“在平面内,已知分别有个点,个点,个点,5 个点,…,n 个点,其中任意三 个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线? ” 探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研 究问题,图中每条线段表示过线段两端点的一条直线)
请解答下列问题:
(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为 ;
(2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.
23.(8分)如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.
24.(8分)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
25.(10分)已知二次函数.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式.
26.(10分)如图,是的直径,且,点为外一点,且,分别切于点、两点.与的延长线交于点.
(1)求证:;
(2)填空:①当__________时,四边形是正方形.
②当____________时,为等边三角形.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、A
4、B
5、D
6、D
7、D
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、24
12、14π
13、3
14、<
15、x1=0,x2=
16、
17、y=1x1
18、
三、解答题(共66分)
19、(1)200人;(2)见详解;(3)840人
20、(1);;(2)成立,理由见解析
21、(1)每千克40元(2)猪肉的售价应该下降5元
22、(1);(2)8.
23、6cm
24、(1)y=﹣x2+4x;(2)P(2,2);(3)S△MOC最大值为.
25、(1)证明见解析;(2).
26、(1)见解析;(2)①;②
整理情况
频数
频率
非常好
0.21
较好
70
一般
不好
36
2023-2024学年贵州省铜仁松桃县联考数学九年级第一学期期末学业水平测试模拟试题含答案: 这是一份2023-2024学年贵州省铜仁松桃县联考数学九年级第一学期期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中正确的是等内容,欢迎下载使用。
2023-2024学年贵州省铜仁市松桃县数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年贵州省铜仁市松桃县数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知2a=3b等内容,欢迎下载使用。
贵州省铜仁地区松桃县2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份贵州省铜仁地区松桃县2023-2024学年九上数学期末学业质量监测模拟试题含答案,共6页。试卷主要包含了下面的函数是反比例函数的是等内容,欢迎下载使用。