2023-2024学年河南省洛阳洛宁县联考九年级数学第一学期期末达标检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为( )
A.6B.10C.4D.6或10
2.已知关于x的方程x2-kx-6=0的一个根为x=-3,则实数k的值为( )
A.1B.-1C.2D.-2
3.将二次函数y=5x2的图象先向右平移2个单位,再向下平移3个单位,得到的函数图象的解析式为( )
A.y=5(x+2)2+3B.y=5(x﹣2)2+3
C.y=5(x+2)2﹣3D.y=5(x﹣2)2﹣3
4.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( )
A.B.C.D.
5.下列函数属于二次函数的是
A.B.
C.D.
6.已知关于x的函数y=x2+2mx+1,若x>1时,y随x的增大而增大,则m的取值范围是( )
A.m≥1B.m≤1C.m≥-1D.m≤-1
7.某校为了了解九年级学生的体能情况,随机抽取了 名学生测试 1分钟仰卧起坐的 次数, 统计结果并绘制成如图所示的频数分布直方图. 已知该校九年级共有名学 生,请据此估计,该校九年级分钟仰卧起坐次数在次之间的学生人数大约是( )
A.B.
C.D.
8.下列事件中,是必然事件的是( )
A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是180°D.经过有交通信号灯的路口,遇到红灯
9.如图,已知正方形ABCD,将对角线BD绕着点B逆时针旋转,使点D落在CB的延长线上的D′点处,那么sin∠AD′B的值是( )
A.B.C.D.
10.方程的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定
二、填空题(每小题3分,共24分)
11.如图,分别以等边三角形的每个顶点为圆心,边长为半径,在另两个顶点之间作一段弧,三段弧围成的曲边三角形称为“勒洛三角形”,若等边三角形的边长为2,则“勒洛三角形”的面积为_________.
12.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.
13.已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离(单位:米)与行驶时间 (单位:秒)满足下面的函数关系: .那么测试实验中该汽车从开始刹车到完全停止,共行驶了_________米.
14.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)
15.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.
16.如图,直线AB与CD相交于点O,OA=4cm,∠AOC=30°,且点A也在半径为1cm的⊙P上,点P在直线AB上,⊙P以1cm/s的速度从点A出发向点B的方向运动_________s时与直线CD相切.
17.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.
18.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积是__________cm2.
三、解答题(共66分)
19.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=, 且OC=4,求PB的长.
20.(6分)问题提出:
如图1,在等边△ABC中,AB=9,⊙C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值
(1)尝试解决:
为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)
如图2,连结CP,在CB上取点D,使CD=1,则有
又∵∠PCD=∠
△ ∽△
∴
∴PD=BP
∴AP+BP=AP+PD
∴当A,P,D三点共线时,AP+PD取到最小值
请你完成余下的思考,并直接写出答案:AP+BP的最小值为 .
(2)自主探索:
如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则AP+PC的最小值为 .(请在图3中添加相应的辅助线)
(3)拓展延伸:
如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.
21.(6分)已知二次函数.
(1)将二次函数化成的形式;
(2)在平面直角坐标系中画出的图象;
(3)结合函数图象,直接写出时x的取值范围.
22.(8分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.
23.(8分)某校3男2女共5名学生参加黄石市教育局举办的“我爱黄石”演讲比赛.
(1)若从5名学生中任意抽取3名,共有多少种不同的抽法,列出所有可能情形;
(2)若抽取的3名学生中,某男生抽中,且必有1女生的概率是多少?
24.(8分)某经销商销售一种成本价为10元/kg的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:
⑴求y与x之间的函数关系式,并写出自变量x的取值范围;
⑵若该经销商想使这种商品获得平均每天168元的利润,求售价应定为多少元/kg?
⑶设销售这种商品每天所获得的利润为W元,求W与x之间的函数关系式;并求出该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?
25.(10分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.
(1)该店每天销售这两种软件共多少个?
(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?
26.(10分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、D
4、D
5、A
6、C
7、B
8、C
9、A
10、A
二、填空题(每小题3分,共24分)
11、
12、
13、1
14、(答案不唯一)
15、或
16、1或5
17、
18、
三、解答题(共66分)
19、(1)证明见解析(2)PB=3
20、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为.
21、(1) ;(2)画图见解析;(3)-3<x <1
22、a=﹣2
23、(1)共有10种不同的抽法,分别是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)
24、(1)y=-2x+1,10≤x≤2;(2)16元/kg;(3)W=-2(x-20)2+200,2元,192元.
25、(1)60;(2)1
26、 (1);(2).
河南省洛阳市实验中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案: 这是一份河南省洛阳市实验中学2023-2024学年数学九年级第一学期期末达标检测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是必然事件的是等内容,欢迎下载使用。
河南省洛阳市洛宁县2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份河南省洛阳市洛宁县2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线y=﹣2,正六边形的边心距与半径之比为等内容,欢迎下载使用。
河南省洛阳嵩县联考2023-2024学年九上数学期末达标测试试题含答案: 这是一份河南省洛阳嵩县联考2023-2024学年九上数学期末达标测试试题含答案,共8页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。