2023-2024学年江西省南昌市进贤县九年级数学第一学期期末调研试题含答案
展开
这是一份2023-2024学年江西省南昌市进贤县九年级数学第一学期期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,将化成的形式为,反比例函数等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,△ABC中,AB=AC,∠ABC=70°,点O是△ABC的外心,则∠BOC的度数为( )
A.40°B.60°C.70°D.80°
2.若一次函数的图像经过第一、二、四象限,则下列不等式中总是成立的是( )
A.B.C.D.
3.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为 ( )
A.95%B.97%C.92%D.98%
4.下列函数中,变量是的反比例函数是( )
A.B.C.D.
5.如图,在中,点D在BC上一点,下列条件中,能使与相似的是( )
A.∠BAD=∠CB.∠BAC=∠BDAC.AB2=BD∙BCD.AC2=CD∙CB
6.如图,A、D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=( )
A.80°B.70°C.60°D.50°
7.将化成的形式为( )
A.B.
C.D.
8.在一个不透明的布袋中装有红色.白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( ).
A.34个B.30个C.10个D.6个
9.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).
A.B.C.D.
10.反比例函数(x<0)如图所示,则矩形OAPB的面积是( )
A.-4B.-2C.2D.4
二、填空题(每小题3分,共24分)
11.在△ABC中,分别以AB,AC为斜边作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,连接DE.若DE=5,则BC长为_____.
12.将矩形纸片ABCD按如下步骤进行操作:
(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;
(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是_____.
13.如图,在中,,,,则的长为_____.
14.二次函数y=x2﹣bx+c的图象上有两点A(3,﹣2),B(﹣9,﹣2),则此抛物线的对称轴是直线x=________.
15.计算_________.
16.已知P是线段AB的黄金分割点,PA>PB,AB=2cm,则PA为___cm.
17.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.
18.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=_____.
三、解答题(共66分)
19.(10分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.
(1)求抛物线的解析式和顶点坐标.
(2)当点位于轴下方时,求面积的最大值.
(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;
②当时,点的坐标是___________.
20.(6分)如图,AC是⊙O的一条直径,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.
(1)求证:AB=BE;
(2)若⊙O的半径R=5,AB=6,求AD的长.
21.(6分)为了加强学校的体育活动,某学校计划购进甲、乙两种篮球,根据市场调研发现,如果购进甲篮球2个和乙篮球3个共需270元;购进甲篮球3个和乙篮球2个共需230元.
(1)求甲、乙两种篮球每个的售价分别是多少元?
(2)为满足开展体育活动的需求,学校计划购进甲、乙两种篮球共100个,由于购货量大,和商场协商,商场决定甲篮球以九折出售,乙篮球以八折出售,学校要求甲种篮球的数量不少于乙种篮球数量的4倍,甲种篮球的数量不多于90个,请你求出学校花最少钱的进货方案;
(3)学校又拿出省下的290元购买跳绳和毽子两种体育器材,跳绳10元一根,毽子5元一个,在把钱用尽的情况下,有多少种进货方案?
22.(8分)已知抛物线经过点(1,0),(0,3).
(1)求该抛物线的函数表达式;
(2)将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.
23.(8分)综合与探究
如图,已知抛物线与轴交于,两点,与轴交于点,对称轴为直线,顶点为.
(1)求抛物线的解析式及点坐标;
(2)在直线上是否存在一点,使点到点的距离与到点的距离之和最小?若存在,求出点的坐标;若不存在,请说明理由.
(3)在轴上取一动点,,过点作轴的垂线,分别交抛物线,,于点,,.
①判断线段与的数量关系,并说明理由
②连接,,,当为何值时,四边形的面积最大?最大值为多少?
24.(8分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).
(1)求证:直线l恒过抛物线C的顶点;
(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.
(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.
25.(10分)已知a=,b=,求.
26.(10分)如图,是由两个等边三角形和一个正方形拼在-起的图形,请仅用无刻度的直尺按要求画图,
(1)在图①中画一个的角,使点或点是这个角的顶点,且以为这个角的一边:
(2)在图②画一条直线,使得.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、C
4、B
5、D
6、D
7、C
8、D
9、D
10、D
二、填空题(每小题3分,共24分)
11、1
12、
13、
14、-3
15、
16、
17、、 、
18、-1
三、解答题(共66分)
19、(1),顶点坐标为;(2)8;(3)①;②.
20、 (1)见解析;(2) AD=.
21、(1)甲种篮球每个的售价为30元,乙种篮球每个的售价为70元;(2)花最少钱的进货方案为购进甲种篮球90个,乙种篮球10个;(3)有28种进货方案.
22、(1);(2)将抛物线向左平移个单位,向上平移个单位,解析式变为.
23、 (1),点坐标为;(2)点的坐标为;(3)①;②当为-2时,四边形的面积最大,最大值为4.
24、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.
25、1.
26、(1)见解析;(2)见解析.
相关试卷
这是一份2023-2024学年江西省南昌市数学九年级第一学期期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
这是一份江西省南昌市进贤县2023-2024学年数学九上期末考试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列结论正确的是,如图,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份2023-2024学年江西省南昌市数学九上期末调研模拟试题含答案,共7页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。