江苏省东海晶都双语学校2023-2024学年九上数学期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1
A.B.C.D.
3.如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是( )
A.2<x<3B.3<x<4C.4<x<5D.5<x<6
4.抛物线与坐标轴的交点个数为( )
A.0B.1C.2D.3
5.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是( )
A.5B.4C.3D.0
6.在下列四个汽车标志图案中,是中心对称图形的是( )
A.B.C.D.
7.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为( )
A.65°B.130°C.50°D.100°
8.下列命题是真命题的个数是( ).
①64的平方根是;
②,则;
③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
④三角形三边的垂直平分线交于一点.
A.1个B.2个C.3个D.4个
9.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( )
A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9
10.将二次函数y=2x2+2的图象先向左平移3个单位长度,再向下平移1个单位长度后所得新函数图象的表达式为( )
A.y=2(x﹣1)2+3B.y=﹣2(x+3)2+1
C.y=2(x﹣3)2﹣1D.y=2(x+3)2+1
二、填空题(每小题3分,共24分)
11.在平面坐标系中,正方形的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,正方形的面积为______,延长交轴于点,作正方形,……按这样的规律进行下去,正方形的面积为______.
12.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),则点D的坐标是_____.
13.因式分解:_______________________.
14.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,ρ=________.
15.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.
16.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是_______m.
17.若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).则S=a+b+c的值的变化范围是_____.
18.一个布袋里放有5个红球,3个黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是____________.
三、解答题(共66分)
19.(10分)某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?
20.(6分)工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
21.(6分)在平面直角坐标系中,已知抛物线.
(1)求抛物线的对称轴;
(2)当时,设抛物线与轴交于两点(点在点左侧),顶点为,若为等边三角形,求的值;
(3)过(其中)且垂直轴的直线与抛物线交于两点.若对于满足条件的任意值,线段的长都不小于1,结合函数图象,直接写出的取值范围.
22.(8分)如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.
(1)求抛物线的解析式;
(2)求线段所在直线的解析式;
(3)在抛物线的对称轴上是否存在点,使为等腰三角形?若存在,求出符合条件的点坐标;若不存在,请说明理由.
23.(8分)如图,在矩形ABCD中,AB=10cm,BC=20cm,两只小虫P和Q同时分别从A、B出发沿AB、BC向终点B、C方向前进,小虫P每秒走1cm,小虫Q每秒走2cm。请问:它们同时出发多少秒时,以P、B、Q为顶 点的三角形与以A、B、C为顶点的三角形相似?
24.(8分)关于的一元二次方程 有两个不等实根,.
(1)求实数的取值范围;
(2)若方程两实根,满足,求的值。
25.(10分)(1)计算:sin230°+cs245°
(2)解方程:x(x+1)=3
26.(10分)一名大学毕业生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为80元/件,经市场调查发现,该产品的日销售量(单位:件)与销售单价(单位:元/件)之间满足一次函数关系,如图所示.
(1)求与之间的函数解析式,并写出自变量的取值范围;
(2)求每天的销售利润(单位:元)与销售单价之间的函数关系式,并求出每件销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)这名大学生计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、C
4、C
5、C
6、B
7、C
8、C
9、C
10、D
二、填空题(每小题3分,共24分)
11、11.25
12、 (3,2)
13、
14、
15、
16、1
17、1<S<2
18、0.2
三、解答题(共66分)
19、每件商品售价60元或50元时,该商店销售利润达到1200元.
20、(1)进价为180元,标价为1元,(2)当降价为10元时,获得最大利润为4900元.
21、 (1)x=2;(2);(3)或.
22、(1);(2);(3)存在,(2,2)或(2,-2)或(2,0)或(2,)
23、2秒或者5
24、(1);(2).
25、 (1) ;(2) x1=,x2=.
26、(1)();(2),每件销售单价为100元时,每天的销售利润最大,最大利润为2000元;(3)该产品的成本单价应不超过65元.
2023-2024学年江苏省扬州市大丰区九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏省扬州市大丰区九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如图,点A是反比例函数y=等内容,欢迎下载使用。
江苏省盐城滨海县联考2023-2024学年九上数学期末质量跟踪监视模拟试题含答案: 这是一份江苏省盐城滨海县联考2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了如果,那么代数式的值是.等内容,欢迎下载使用。
江苏省东海晶都双语学校2023-2024学年九上数学期末学业水平测试试题含答案: 这是一份江苏省东海晶都双语学校2023-2024学年九上数学期末学业水平测试试题含答案,共7页。试卷主要包含了把二次函数配方后得等内容,欢迎下载使用。