2023-2024学年山东省德州庆云县联考数学九年级第一学期期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,空地上(空地足够大)有一段长为10m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m1.若设AD=xm,则可列方程( )
A.(60﹣)x=900B.(60﹣x)x=900C.(50﹣x)x=900D.(40﹣x)x=900
2.如果,那么锐角A的度数是 ( )
A.60°B.45°C.30°D.20°
3.已知,则锐角的取值范围是( )
A.B.C.D.
4.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是
A.当AC=BD时,四边形ABCD是矩形
B.当AB=AD,CB=CD时,四边形ABCD是菱形
C.当AB=AD=BC时,四边形ABCD是菱形
D.当AC=BD,AD=AB时,四边形ABCD是正方形
5.某班的同学想测量一教楼AB的高度.如图,大楼前有一段斜坡,已知的长为16米,它的坡度.在离点45米的处,测得一教楼顶端的仰角为,则一教楼的高度约( )米(结果精确到0.1米)(参考数据:,,,)
A.44.1 B.39.8 C.36.1 D.25.9
6.如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为( )
A.一直不变B.一直变大
C.先变小再变大D.先变大再变小
7.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是( )
A.①②③B.①②④C.①③④D.③④
8.如图,在菱形中,,,为中点,是上一点,为上一点,且,,交于点,关于下列结论,正确序号的选项是( )
①,②,③④
A.①②B.①②③C.①②④D.①③④
9.在直角梯形ABCD中,AD//BC,∠B=90º,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论:①DE⊥EC;②点E是AB的中点;③AD∙BC=BE∙DE;④CD=AD+BC.其中正确的有( )
A.①②③B.②③④C.①②④D.①③④
10.下列关于抛物线有关性质的说法,正确的是( )
A.其图象的开口向下B.其图象的对称轴为
C.其最大值为D.当时,随的增大而减小
二、填空题(每小题3分,共24分)
11.已知x=1是一元二次方程x2﹣3x+a=0的一个根,则方程的另一个根为_____.
12.如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是______.
13.函数是关于的二次函数,且抛物线的开口向上,则的值为____________.
14.抛物线y=4x2﹣3x与y轴的交点坐标是_____.
15.方程(x+5)2=4的两个根分别为_____.
16.下表是某种植物的种子在相同条件下发芽率试验的结果.
根据上表中的数据,可估计该植物的种子发芽的概率为________.
17.公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了有关黄金矩形的问题.并建立起比例理论,他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中较长部分对于全部之比,等于较短部分对于较长部分之比.所谓黄金矩形指的就是矩形的宽与长的比适合这一比例.则在黄金矩形中宽与长的比值是______.
18.用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_____.
三、解答题(共66分)
19.(10分)已知:如图,,点在射线上.
求作:正方形,使线段为正方形的一条边,且点在内部.(请用直尺、圆规作图,不写作法,但要保留作图痕迹)
20.(6分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC
(1)请判断:FG与CE的数量关系是__________,位置关系是__________;
(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.
21.(6分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).
(1)求此抛物线的函数表达式;
(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当△BCD面积最大时,求点P的坐标;
(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.
22.(8分)我国古代数学著作《九章算术》中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?” .其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B出有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,求正方形城池的边长.
23.(8分)在平面直角坐标系xOy中,抛物线交 y轴于点为A,顶点为D,对称轴与x轴交于点H.
(1)求顶点D的坐标(用含m的代数式表示);
(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;
(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.
24.(8分)已知抛物线y=x2+bx+c的图像过A(﹣1,0)、B(3,0)两点.求抛物线的解析式和顶点坐标.
25.(10分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.
(1)求证:四边形AEGF是正方形;
(2)求AD的长.
26.(10分)解答下列各题:
(1)计算:2cs31°﹣tan45°﹣;
(2)解方程:x2﹣11x+9=1.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、B
4、C
5、C
6、D
7、B
8、B
9、C
10、D
二、填空题(每小题3分,共24分)
11、
12、
13、
14、 (0,0)
15、x1=﹣7,x2=﹣3
16、0.1
17、
18、12
三、解答题(共66分)
19、见详解
20、 (1) FG=CE,FG∥CE;(2)成立,理由见解析.
21、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)
22、正方形城池的边长为300步
23、(1)顶点D(m,1-m);(1)向左平移了1个单位,向上平移了1个单位;(3)m=-1或m=-1.
24、y=x2-2x-3,顶点坐标为(1,-4).
25、(1)见解析;(2)AD=1;
26、(1)1;(2)x1=1,x2=2.
种子个数
100
400
900
1500
2500
4000
发芽种子个数
92
352
818
1336
2251
3601
发芽种子频率
0. 92
0. 88
0. 91
0. 89
0. 90
0. 90
2023-2024学年山东省枣庄数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山东省枣庄数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了抛物线y=的对称轴方程为等内容,欢迎下载使用。
山东省菏泽郓城县联考2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份山东省菏泽郓城县联考2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年山东省庆云县联考九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份2023-2024学年山东省庆云县联考九年级数学第一学期期末质量跟踪监视试题含答案,共7页。试卷主要包含了若点在反比例函数上,则的值是等内容,欢迎下载使用。