2023-2024学年北京市房山区名校九上数学期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.下列命题中,是真命题的是
A.两条对角线互相平分的四边形是平行四边形
B.两条对角线相等的四边形是矩形
C.两条对角线互相垂直的四边形是菱形
D.两条对角线互相垂直且相等的四边形是正方形
2.对于反比例函数,下列说法不正确的是
A.图象分布在第二、四象限
B.当时,随的增大而增大
C.图象经过点(1,-2)
D.若点,都在图象上,且,则
3.如图,已知若的面积为,则的面积为( )
A.B.C.D.
4.已知是关于的一元二次方程的两个根,且满足,则的值为( )
A.2B.C.1D.
5.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )
A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内
6.⊙O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作⊙O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为( )
A.7B.8C.9D.10
7.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么( )
A.y1>y2>0B.y2>y1>0C.y1<y2<0D.y2<y1<0
8.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是( )
A.15°B.25°C.30°D.75°
9.抛物线 的顶点坐标是( )
A.(2,1)B.C.D.
10.图所示,已知二次函数的图象正好经过坐标原点,对称轴为直线.给出以下四个结论:①;②;③;④.正确的有( )
A.个B.个C.个D.个
二、填空题(每小题3分,共24分)
11.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=_____.
12.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为米,旗杆的影长为米,若小青的身高为米,则旗杆的高度为__________米.
13.一元二次方程x2=2x的解为________.
14.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线的图象上,边CD交y轴于点E,若,则k的值为______.
15.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.
16.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是
17.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.
18.已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是______.
三、解答题(共66分)
19.(10分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.
20.(6分)将两张半径均为10的半圆形的纸片完全重合叠放一起,上面这张纸片绕着直径的一端B顺时针旋转30°后得到如图所示的图形,与直径AB交于点C,连接点与圆心O′.
(1)求的长;
(2)求图中下面这张半圆形纸片未被上面这张纸片重叠部分的面积.
21.(6分)解方程:(l)
(2)(配方法).
22.(8分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.
(1)在图①中,画一个与∠B互补的圆周角;
(2)在图②中,画一个与∠B互余的圆周角.
23.(8分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加小时,求m的值.
24.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
25.(10分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)
(1)分别求出y1、y2的函数关系式(不写自变量取值范围);
(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?
26.(10分)计算:;
参考答案
一、选择题(每小题3分,共30分)
1、A
2、D
3、A
4、B
5、A
6、B
7、A
8、C
9、D
10、C
二、填空题(每小题3分,共24分)
11、4
12、1
13、x1=0,x1=1
14、4
15、1
16、y2=.
17、
18、3π.
三、解答题(共66分)
19、(1)点B的坐标是(-5,-4);直线AB的解析式为:
(2)四边形CBED是菱形.理由见解析
20、(1)(2)
21、(1);(2)
22、(1)见解析;(2)见解析
23、(2)2600;(2)2.
24、 (1);
(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
25、(1)y1=;y2=x2﹣4x+2;(2)5月出售每千克收益最大,最大为.
26、1
北京市崇文区名校2023-2024学年九上数学期末监测模拟试题含答案: 这是一份北京市崇文区名校2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了如图,在中,,,,,则的长为,在中,,若已知,则等内容,欢迎下载使用。
2023-2024学年新疆乌鲁木齐市名校九上数学期末监测模拟试题含答案: 这是一份2023-2024学年新疆乌鲁木齐市名校九上数学期末监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,阅读理解,方程是关于的一元二次方程,则等内容,欢迎下载使用。
2023-2024学年北京市丰台区九上数学期末监测模拟试题含答案: 这是一份2023-2024学年北京市丰台区九上数学期末监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线的顶点坐标是,在平面直角坐标系中,点P等内容,欢迎下载使用。