重庆市乌江新高考协作体2023-2024学年高二上学期期末数学试卷(Word版附答案)
展开这是一份重庆市乌江新高考协作体2023-2024学年高二上学期期末数学试卷(Word版附答案),共10页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
(分数:150分,时间:120分钟)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若圆的方程为,则圆心坐标为( )
A.B.C.D.
2.下列直线中,倾斜角最大的是( )
A.B.
C.D.
3.已知圆 的圆心为 ,且圆 与 轴的交点分别为 ,则圆 的标准方程为( )
A.B.
C.D.
4.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转换成图3所示的空间几何体.若图3中每个正方体的棱长为1,则直线CQ与平面所成角的正弦值为( )
A.B.C.D.
5.已知直线:和圆:交于A,B两点,则弦AB所对的圆心角的余弦值为( )
A.B.C.D.
6.折纸是一种以纸张折成各种不同形状的艺术活动,折纸大约起游于公元1世纪或者2世纪时的中国,折纸与自然科学结合在一起,不仅成为建筑学院的教具,还发展出了折纸几何学成为现代几何学的一个分支.如图,现有一半径为4的圆纸片(A为圆心,B为圆内的一定点),且,如图将圆折起一角,使圆周正好过点B,把纸片展开,并留下一条折痕,折痕上到A,B两点距离之和最小的点为P,如此往复,就能得到越来越多的折痕,设P点的轨迹为曲线C.在C上任取一点M,则△MAB面积的最大值是( )
A.2B.3C.D.
7.已知椭圆的方程为,上顶点为,左顶点为,设为椭圆上一点,则面积的最大值为.若已知,点为椭圆上任意一点,则的最小值为( )
A.2B.C.3D.
8.设双曲线的左、右焦点为,渐近线方程为,过直线交双曲线左支于两点,则的最小值为( )
A.9B.10C.14D.
二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求的。全部选对的得5分,部分选对的得2分,有选错的得2分。
9.已知点,在z轴上求一点B,使|AB|=7,则点B的坐标为( )
A.B.
C.D.
10.下列四个命题中真命题有( )
A.直线在轴上的截距为
B.经过定点的直线都可以用方程表示
C.直线必过定点
D.已知直线与直线平行,则平行线间的距离是
11.设.若,则( )
A.B.
C.D.
12.已知双曲线C: (,),过左焦点作一条渐近线的垂线,垂足为P,过右焦点作一条直线交C的右支于A,B两点,的内切圆与相切于点Q,则( )
A.线段AB的最小值为
B.的内切圆与直线AB相切于点
C.当时,C的离心率为2
D.当点关于点P的对称点在另一条渐近线上时,C的渐近线方程为
三、填空题:本题共4小题,每小题5分,共20分。
13.已知直线方程为,则该直线的倾斜角为 .
14.椭圆上有且仅有4个不同的点满足,其中,则椭圆C的离心率的取值范围为 .
15.古希腊数学家阿波罗尼斯(Apllnius f Perga,约公元前262~190年)发现:平面上两定点A,B,则满足的动点M的轨迹是一个圆,后人称这个圆为阿波罗尼斯圆,简称阿氏圆.在直角坐标系xOy中,已知,动点M满足,则面积的最大值为 .
16.如图抛物线的顶点为A,焦点为F,准线为,焦准距为4;抛物线的顶点为B,焦点也为F,准线为,焦准距为6.和交于P、Q两点,分别过P、Q作直线与两准线垂直,垂足分别为M、N、S、T,过F的直线与封闭曲线APBQ交于C、D两点,则下列说法正确的是
①;②四边形MNST的面积为;③;④的取值范围为.
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
17.如图,已知直四棱柱中,,底面是直角梯形,为直角,AB∥CD,,,,请建立适当空间直角坐标系,并求各个点的坐标.
18.圆截直线所得的弦长为,求的值
19.已知抛物线的焦点为是抛物线上一点且三角形MOF的面积为(其中O为坐标原点),不过点M的直线l与抛物线C交于P,Q两点,且以PQ为直径的圆经过点M,过点M作交PQ于点N.
(1)求抛物线C的方程;
(2)求证直线PQ恒过定点,并求出点N的轨迹方程.
20.如图,在四棱锥中,平面平面,且是边长为2的等边三角形,四边形是矩形,,M为的中点.
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)求点D到平面的距离.
21.图1是由正三角形和正方形组成的一个平面图形,将其沿折起使得平面底面,连结、,如图2.
(1)证明:;
(2)求二面角的余弦值.
22.已知中心在坐标原点,一个焦点为的椭圆被直线截得的弦的中点的横坐标为.
(1)求此椭圆的方程;
(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为,求面积的最大值及此时直线的方程.
2023-2024学年(上)期末学业质量联合调研抽测
高二数学答案
(分数:150分,时间:120分钟)
1.D2.B3.B4.B5.C6.D
7.D【分析】当面积的最大值时,直线与椭圆相切,设与直线平行的椭圆的切线方程为,与椭圆联立得到,由面积的最大值为,求得,,由均值不等式即得解.
8.A【分析】根据渐近线方程求得,利用双曲线的定义,通过求的最小值来求得的最小值.
9.AC10.CD
11.BCD【分析】根据方程表示的曲线或函数的单调性可得正确的选项。
12.BD【分析】设出直线方程,联立双曲线方程,利用韦达定理及弦长公式可判断A,根据双曲线的定义和内切圆性质可判断B,由题可得进而可判断C,根据条件可得渐近线与x轴的夹角为可判断D.
13.//45°
14.
15.13
16.①②③④
17.【详解】如图,以为坐标原点,
分别以所在直线为轴建立空间直角坐标系.
则,,,,,,,.
18.【详解】
因此圆心到直线距离为
因为圆截直线所得的弦长为,
所以
19.(1)由题意得,
故,解得,
故拋物线C的方程为.
(2)易得,由题意可设直线PQ的方程为,,
由,消去x,得,
故,
因为,
所以,即,
整理得,
即,
∴,
所以,
所以或,
当,即时,
直线PQ的方程为,此时直线过点,不合题意舍去;
当,即时,
直线PQ的方程为,此时直线PQ恒过定点.
设,
则由,即,
得,
即点N的轨迹方程为.
20.【详解】(1)以点D为原点,分别以直线为轴、轴,建立如图所示的空间直角坐标系,依题意,可得 ,
即,∴.
(2)设为平面的法向量,
则即
取得
,
.
(3)设点到平面的距离为,由(2)可知为平面的一个法向量,
即点到平面的距离为.
21.【详解】(1)由题可知:在正方形中,有
又平而平面,平而平面
平面,所以平面
又平面,所以
(2)根据(1)可知:过点作轴垂直平面
建立如图所示空间直角坐标系
设,所以
所以
设平面的一个法向量为
所以,令,所以
所以
平面的一个法向量为
所以二面角的余弦值为
22.【详解】(1)设所求椭圆方程为,由题意知,①
设直线与椭圆的两个交点为,弦的中点为,
由,两式相减得:,
两边同除以,得,即.
因为椭圆被直线截得的弦的中点的横坐标为,所以,
所以,,所以,即,②
由①②可得,
所以所求椭圆的方程为;
(2)设,的中点为,
联立,消可得:,
此时,即①
又,,
为对角线的菱形的一顶点为,由题意可知,即
整理可得:②
由①②可得,∵,
设到直线的距离为,则
,
当时,的面积取最大值1,此时
∴直线方程为.
相关试卷
这是一份重庆市乌江新高考协作体2023-2024学年高一上学期期末学业质量联合调研抽测数学试题(Word版附解析),共15页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市乌江新高考协作体2023-2024学年高二上学期期末学业质量联合调研抽测数学试题(Word版附解析),共22页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市乌江新高考协作体2023-2024学年高二上学期期中学业质量联合调研抽测数学试题(Word版附解析),共24页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。