浙江省杭州市上城区2023-2024学年数学八上期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。从袋中摸出4个球,下列属于必然事件的是( )
A.摸出的4个球其中一个是绿球B.摸出的4个球其中一个是红球
C.摸出的4个球有一个绿球和一个红球D.摸出的4个球中没有红球
2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A.∠B=∠CB.AD=AEC.BD=CED.BE=CD
3.点P(-2,-3)关于x轴的对称点为( )
A.B.C.D.
4.把分式方程化成整式方程,去分母后正确的是( )
A.B.
C.D.
5.点到轴的距离是( ).
A.3B.4C.D.
6.在平面直角坐标系中,如果点A的坐标为(﹣1,3),那么点A一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7.关于等腰三角形,有以下说法:
(1)有一个角为的等腰三角形一定是锐角三角形
(2)等腰三角形两边的中线一定相等
(3)两个等腰三角形,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等
(4)等腰三角形两底角的平分线的交点到三边距离相等
其中,正确说法的个数为( )
A.个B.个C.个D.个
8.已知二元一次方程组,则m+n的值是( )
A.1B.0C.-2D.-1
9.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )
A.4,5B.5,4C.4,4D.5,5
10.如图,在中,的平分线与的垂直平分线相交于点,过点分别作于点,于点,下列结论正确的是( )
①;②;③;④;⑤.
A.①②③④B.②③④⑤C.①②④⑤D.①②③④⑤
11.下列二次根式中,是最简二次根式的是( )
A.B.C.D.
12.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4
二、填空题(每题4分,共24分)
13.若4a2+b2﹣4a+2b+2=0,则ab=_____.
14.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.
15.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A点爬到B点,那么最短的路径是_______________分米.(结果保留根号)
16.点A(﹣3,2)关于y轴的对称点坐标是_____.
17.因式分解:3x2-6xy+3y2=______.
18.在如图所示的方格中,连接格点AB、AC,则∠1+∠2=_____度.
三、解答题(共78分)
19.(8分)如图,在平面直角坐标系中,两点的坐标分别是点,点,且满足:.
(1)求的度数;
(2)点是轴正半轴上点上方一点(不与点重合),以为腰作等腰,,过点作轴于点.
①求证:;
②连接交轴于点,若,求点的坐标.
20.(8分)已知y与成正比,当时,.
(1)求y与x之间的函数关系式;
(2)若点在这个函数图象上,求a的值.
21.(8分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
22.(10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.
(1)实际每年绿化面积为多少万平方米?
(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?
23.(10分)先化简,再求值.
,其中.
24.(10分)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.
(1)求证:∠A+∠C=∠B+D;
(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.
①以线段AC为边的“8字型”有 个,以点O为交点的“8字型”有 个;
②若∠B=100°,∠C=120°,求∠P的度数;
③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.
25.(12分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.
(1)甲、乙两人每天各加工多少个这种零件?
(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?
26.(12分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.
求证:BE=CF.
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、B
5、B
6、B
7、B
8、D
9、A
10、D
11、B
12、D
二、填空题(每题4分,共24分)
13、﹣0.5
14、
15、
16、(3,2)
17、3(x﹣y)1
18、1
三、解答题(共78分)
19、(1)45°;(2)①见解析;②(﹣2,0).
20、 (1);(2)a=2.5.
21、(1)该种干果的第一次进价是每千克5元.(2)超市销售这种干果共盈利5820元.
22、(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加1万平方米.
23、9xy,-54
24、 (1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.
25、(1)甲、乙两人每天各加工 40、60 个这种零件;(2)甲至少加工了 1 天.
26、证明见解析.
2023-2024学年浙江省杭州市上城区七年级(上)期末数学试卷: 这是一份2023-2024学年浙江省杭州市上城区七年级(上)期末数学试卷,共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
浙江省杭州市春蕾中学2023-2024学年九上数学期末达标检测试题含答案: 这是一份浙江省杭州市春蕾中学2023-2024学年九上数学期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
浙江省杭州市上城区建兰中学2023-2024学年数学九上期末质量检测试题含答案: 这是一份浙江省杭州市上城区建兰中学2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了若,则,的值为等内容,欢迎下载使用。