重庆市永川区第五中学2023-2024学年数学八上期末调研试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.若,则的值为( )
A.6B.C.D.
2.下列数据的方差最大的是( )
A.3,3,6,9,9B.4,5,6,7,8C.5,6,6,6,7D.6,6,6,6,6
3.如图,在△ABC中,AB=AC,BC=5,AB=11,AB的垂直平分线DE交AB于点E,交AC于点D,则△BCD的周长是( )
A.16B.6C.27D.18
4.下列各组数中,以它们为边长的线段不能构成直角三角形的是( )
A.6,8,10B.8,15,16C.4,3,D.7,24,25
5.下列各式的变形中,正确的是( )
A.B.C.D.
6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为( )
A.8B.11C.13D.15
7.如图,已知,,,,则下列结论错误的是( )
A.B.C.D.
8.如图,点A的坐标为(8,0),点B为y轴负半轴上的一动点,分别以OB,AB为直角边在第三、第四象限作等腰直角三角形OBF,等腰直角三角形ABE,连接EF交y轴与P点,当点B在y轴上移动时,则PB的长度是( )
A.2B.4C.不是已知数的定值D.PB的长度随点B的运动而变化
9.已知是多项式的一个因式,则可为( )
A.B.C.D.
10.如图,点是的角平分线上一点,于点,点是线段上一点.已知,,点为上一点.若满足,则的长度为( )
A.3B.5C.5和7D.3或7
二、填空题(每小题3分,共24分)
11.点和关于轴对称,则_____.
12.点M(-5,−2)关于x轴对称的点是点N,则点N的坐标是________.
13.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,若AB=4,BC=6,则OD的长为_____.
14.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).
15.计算:___.
16.的立方根是___________
17.如图,在平面直角坐标系中,点在直线上,过点作轴于点,作等腰直角三角形(与原点重合),再以为腰作等腰直角三角形,以为腰作等腰直角三角形;按照这样的规律进行下去,那么的坐标为______.的坐标为______.
18.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.
三、解答题(共66分)
19.(10分)为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.
根据图表提供的信息,回答下列问题:
(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;
(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?
(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.
20.(6分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当时,求与之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
21.(6分)如图,BN是等腰Rt△ABC的外角∠CBM内部的一条射线,∠ABC=90°,AB=CB,点C关于BN的对称点为D,连接AD,BD,CD,其中CD,AD分别交射线BN于点E,P.
(1)依题意补全图形;
(2)若∠CBN=,求∠BDA的大小(用含的式子表示);
(3)用等式表示线段PB,PA与PE之间的数量关系,并证明.
22.(8分)已知是等边三角形,点是直线上一点,以为一边在的右侧作等边.
(1)如图①,点在线段上移动时,直接写出和的大小关系;
(2)如图②,点在线段的延长线上移动时,猜想的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.
23.(8分)湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.
(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;
(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?
24.(8分)某条道路限速如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪处的正前方的处,过了后,小汽车到达B处,此时测得小汽车与车速测检测仪间的距离为,这辆小汽车超速了吗?
25.(10分)已知:如图所示,△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线段BD、CE,垂足分别D、E.
(1)求证:DE=BD+CE.
(2)如果过点A的直线经过∠BAC的内部,那么上述结论还成立吗?请画出图形,直接给出你的结论(不用证明).
26.(10分)如图1,在平面直角坐标系中,点A(a,1)点B(b,1)为x轴上两点,点C在Y轴的正半轴上,且a,b满足等式a2+2ab+b2=1.
(1)判断△ABC的形状并说明理由;
(2)如图2,M,N是OC上的点,且∠CAM=∠MAN=∠NAB,延长BN交AC于P,连接PM,判断PM与AN的位置关系,并证明你的结论.
(3)如图3,若点D为线段BC上的动点(不与B,C重合),过点D作DE⊥AB于E,点G为线段DE上一点,且∠BGE=∠ACB,F为AD的中点,连接CF,FG.求证:CF⊥FG.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、A
4、B
5、C
6、C
7、B
8、B
9、D
10、D
二、填空题(每小题3分,共24分)
11、
12、(-5,2)
13、
14、>.
15、-6
16、
17、
18、25°或40°或10°
三、解答题(共66分)
19、(1),对应扇形的圆心角度数为18;(2)该区八年级学生睡眠时间合格的共有人;(3)该区八年级学生的平均睡眠时间为小时.
20、(1);(2);(3)甲加工或时,甲与乙加工的零件个数相等.
21、(1)补图见解析;(2)45°-;(3)PA=(PB+PE)..
22、(1),理由见解析;(2),不发生变化;理由见解析
23、(1)每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)共需210元.
24、小汽车超速了.
25、(1)见解析;(2)上述结论不成立.
26、(1)△ABC是等腰三角形;(2)PM∥AN,证明见解析;(3)见解析
组别
睡眠时间
重庆市永川区第五中学2023-2024学年数学九上期末达标检测模拟试题含答案: 这是一份重庆市永川区第五中学2023-2024学年数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了函数y=ax2﹣1与y=ax等内容,欢迎下载使用。
重庆市江津区名校2023-2024学年八上数学期末调研试题含答案: 这是一份重庆市江津区名校2023-2024学年八上数学期末调研试题含答案,共7页。试卷主要包含了立方根是-3的数是,用科学记数法表示为,如图,将点A0,不等式组的解集在数轴上可表示为,下列各点中,第四象限内的点是,已知正比例函数y=kx,下列运算正确的是等内容,欢迎下载使用。
重庆市江津区七校2023-2024学年八上数学期末调研模拟试题含答案: 这是一份重庆市江津区七校2023-2024学年八上数学期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。