江西抚州市临川区2023-2024学年数学八上期末统考试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程(米)与时间(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )
A.乙队率先到达终点
B.甲队比乙队多走了米
C.在秒时,两队所走路程相等
D.从出发到秒的时间段内,乙队的速度慢
2.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是
A.他离家8km共用了30minB.他等公交车时间为6min
C.他步行的速度是100m/minD.公交车的速度是350m/min
3.关于函数y=2x,下列结论正确的是( )
A.图象经过第一、三象限
B.图象经过第二、四象限
C.图象经过第一、二、三象限
D.图象经过第一、二、四象限
4.使分式有意义的x的取值范围是( )
A.x>﹣2B.x<2C.x≠2D.x≠﹣2
5.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是( )
A.B.C.D.
6.一组数据:,若增加一个数据,则下列统计量中,发生改变的是( )
A.方差B.众数C.中位数D.平均数
7.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是
A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC
8.若关于的方程的解是正数,则的取值范围是( )
A.B.且C.且D.且
9.已知,,,则、、的大小关系是( )
A.B.C.D.
10.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=.已知△ABC的三边长分别为1,2,,则△ABC的面积为( ).
A.1B.C.D.
二、填空题(每小题3分,共24分)
11.若(x2﹣a)x+2x的展开式中只含有x3这一项,则a的值是_____.
12.当________时,分式无意义.
13.若代数式 的值为零,则x的取值应为_____.
14.如果,则__________ .
15.如图,在中,∠A=60°,D是BC边上的中点,DE⊥BC,∠ABC的平分线BF交DE于内一点P,连接PC,若∠ACP=m°,∠ABP=n°,则m、n之间的关系为______.
16.在中,是中线,是高,若,,则的面积__________.
17.若分式有意义,则实数的取值范围是_______.
18.请你写出一个图像不经过第三象限的一次函数解析式__________.
三、解答题(共66分)
19.(10分)某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数和中位数;
(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?
20.(6分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.
(1)每个文具盒、每支钢笔各多少元?
(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?
21.(6分)(背景知识)研究平面直角坐标系,我们可以发现一条重要的规律:若平面直角坐标系上有两个不同的点、,则线段AB的中点坐标可以表示为
(简单应用)如图1,直线AB与y轴交于点,与x轴交于点,过原点O的直线L将分成面积相等的两部分,请求出直线L的解析式;
(探究升级)小明发现“若四边形一条对角线平分四边形的面积,则这条对角线必经过另一条对角线的中点”
如图2,在四边形ABCD中,对角线AC、BD相交于点O,试说明;
(综合运用)如图3,在平面直角坐标系中,,,若OC恰好平分四边形OACB的面积,求点C的坐标.
22.(8分)利用多项式的乘法法则可以推导得出:
=
=
型式子是数学学习中常见的一类多项式,因式分解是与整式乘法方向相反的变形,利用这种关系可得
①
因此,利用①式可以将型式子分解因式.
例如:将式子分解因式,这个式子的二次项系数是1,常数项,一次项系数,因此利用①式可得.
上述分解因式的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(图1)
这样,我们也可以得到.
这种方法就是因式分解的方法之一十字相乘法.
(1)利用这种方法,将下列多项式分解因式:
(2)
23.(8分)课堂上,老师出了一道题:比较与的大小.
小明的解法如下:
解:,因为,所以,所以,所以,所以,我们把这种比较大小的方法称为作差法.
(1)根据上述材料填空(在横线上填“”“=”或“”):
若,则 ;若,则 ;若,则 .
(2)利用上述方法比较实数与的大小.
24.(8分)某商场购进甲、乙两种商品,甲种商品共用了元,乙种商品共用了元.已知乙种商品每件进价比甲种商品每件进价多元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;
25.(10分)某服装店用4 500元购进一批衬衫,很快售完,服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?
26.(10分)如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.
(1)若∠A=∠AOC,试说明:∠B=∠BOC;
(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;
(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、A
4、D
5、A
6、A
7、B
8、C
9、D
10、A
二、填空题(每小题3分,共24分)
11、1
12、=1
13、1.
14、 ;
15、m+3n=1
16、2
17、
18、(答案不唯一).
三、解答题(共66分)
19、(1)条形统计图中D类型的人数错误;2人;(2)众数为5,中位数为5;(3)1378棵.
20、 (1);(2) 147元.
21、 [简单应用][探究升级][综合运用]
22、(1);;(2)
23、 (1);=;;(2).
24、甲种商品的进价为每件元,乙种商品的进价为每件元.
25、 (1)第一批衬衫进了30件,第二批进了15件(2)第二批衬衫每件至少要售170元
26、⑴证明解析;(2)30°;(3)∠P的度数不变,∠P=25°.
2023-2024学年江西抚州市临川区九上数学期末监测模拟试题含答案: 这是一份2023-2024学年江西抚州市临川区九上数学期末监测模拟试题含答案,共9页。试卷主要包含了如图,该几何体的主视图是等内容,欢迎下载使用。
江西省抚州市临川区第四中学2023-2024学年数学九年级第一学期期末统考试题含答案: 这是一份江西省抚州市临川区第四中学2023-2024学年数学九年级第一学期期末统考试题含答案,共7页。试卷主要包含了二次函数的图象的顶点坐标是,抛物线y=2-3的对称轴是等内容,欢迎下载使用。
2023-2024学年江西省抚州市临川区第四中学九上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江西省抚州市临川区第四中学九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列函数的图象,不经过原点的是,下列各数中,属于无理数的是,若,下列结论正确的是等内容,欢迎下载使用。