所属成套资源:浙江省2023-2024学年八年级上学期数学同步培优(浙教版中考真题精选)
第2章一元二次方程(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期数学同步培优
展开
这是一份第2章一元二次方程(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期数学同步培优,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.(2023·浙江湖州·统考中考真题)某品牌新能源汽车2020年的销售量为20万辆,随着消费人群的不断增多,该品牌新能源汽车的销售量逐年递增,2022年的销售量比2020年增加了万辆.如果设从2020年到2022年该品牌新能源汽车销售量的平均年增长率为x,那么可列出方程是( )
A.B.
C.D.
2.(2023·浙江衢州·统考中考真题)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了人,则可得到方程( )
A.B.C.D.
3.(2022·浙江温州·统考中考真题)若关于x的方程有两个相等的实数根,则c的值是( )
A.36B.C.9D.
4.(2021·浙江台州·统考中考真题)关于x的方程x24x+m=0有两个不相等的实数根,则m的取值范围是( )
A.m>2B.m<2C.m>4D.m<4
5.(2013上·福建宁德·九年级阶段练习)用配方法解方程时,配方结果正确的是( )
A.B.C.D.
6.(2020·浙江衢州·统考中考真题)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )
A.180(1﹣x)2=461B.180(1+x)2=461
C.368(1﹣x)2=442D.368(1+x)2=442
7.(2020·浙江湖州·统考中考真题)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.实数根的个数与实数b的取值有关
8.(2019·浙江金华·统考中考真题)用配方法解方程时,配方结果正确的是( )
A.B.
C.D.
二、填空题
9.(2023·浙江金华·统考中考真题)如图是一块矩形菜地,面积为.现将边增加.
(1)如图1,若,边减少,得到的矩形面积不变,则的值是 .
(2)如图2,若边增加,有且只有一个的值,使得到的矩形面积为,则的值是 .
10.(2023·浙江·统考中考真题)如图,分别以为边长作正方形,已知且满足,.
(1)若,则图1阴影部分的面积是 ;
(2)若图1阴影部分的面积为,图2四边形的面积为,则图2阴影部分的面积是 .
11.(2022·浙江衢州·统考中考真题)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程: (不必化简).
12.(2022·浙江杭州·统考中考真题)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(),则 (用百分数表示).
13.(2021·浙江丽水·统考中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:
结合他们的对话,请解答下列问题:
(1)当时,a的值是 .
(2)当时,代数式的值是 .
14.(2018·浙江台州·统考中考真题)已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m= .
15.(2019·浙江嘉兴·统考中考真题)在x2+( )+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
16.(2017·浙江杭州·中考真题)若,则m= .
三、解答题
17.(2023·浙江杭州·统考中考真题)设一元二次方程.在下面的四组条件中选择其中一组的值,使这个方程有两个不相等的实数根,并解这个方程.
①;②;③;④.
注:如果选择多组条件分别作答,按第一个解答计分.
18.(2021·浙江嘉兴·统考中考真题)小敏与小霞两位同学解方程的过程如下框:
你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.
19.(2017·浙江台州·中考真题) 在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点;
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点,另一条直角边恒过点;
第三步:在移动过程中,当三角板的直角顶点落在轴上点处时,点的横坐标即为该方程的一个实数根(如图1);
第四步:调整三角板直角顶点的位置,当它落在轴上另—点处时,点的横坐标即为该方程的另一个实数根.
(1)在图2中,按照“第四步”的操作方法作出点(请保留作出点时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的就是方程的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当与之间满足怎样的关系时,点就是符合要求的—对固定点?
已知实数同时满足,求代数式的值.
小敏:
两边同除以,得
,
则.
小霞:
移项,得,
提取公因式,得.
则或,
解得,.
参考答案:
1.D
【分析】设年平均增长率为x,根据2020年销量为20万辆,到2022年销量增加了万辆列方程即可.
【详解】解:设年平均增长率为x,由题意得
,
故选:D.
【点睛】本题考查了一元二次方程的应用—增长率问题,准确理解题意,熟练掌握知识点是解题的关键.
2.C
【分析】患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每一轮传染中平均每人传染了人,则第一轮传染了个人,第二轮作为传染源的是人,则传染人,依题意列方程:.
【详解】由题意得:,
故选:C.
【点睛】本题考查的是根据实际问题列一元二次方程.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.
3.C
【分析】根据判别式的意义得到,然后解关于c的一次方程即可.
【详解】解:∵方程有两个相等的实数根
∴
解得
故选:C.
【点睛】本题考查了根的判别式:一元二次方程的跟与的关系,关键是分清楚以下三种情况:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.
4.D
【分析】根据方程x24x+m=0有两个不相等的实数根,可得,进而即可求解.
【详解】解:∵关于x的方程x24x+m=0有两个不相等的实数根,
∴,解得:m<4,
故选D.
【点睛】本题主要考查一元二次方程根的判别式,熟练掌握ax2+bx+c=0(a≠0)有两个不相等的实数根,则判别式大于零,是解题的关键.
5.D
【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.
【详解】解:,
,
,
,
故选:D.
【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方.
6.B
【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程.
【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,
故选:B.
【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.
7.A
【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.
【详解】解:∵△=b2﹣4×(﹣1)=b2+4>0,
∴方程有两个不相等的实数根.
故选:A.
【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
8.A
【分析】利用配方法把方程变形即可.
【详解】用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,
故选A.
【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.
9. 6 /
【分析】(1)根据面积的不变性,列式计算即可.
(2)根据面积,建立分式方程,转化为a一元二次方程,判别式为零计算即可.
【详解】(1)根据题意,得,起始长方形的面积为,变化后长方形的面积为,
∵,边减少,得到的矩形面积不变,
∴,
解得,
故答案为:6.
(2)根据题意,得,起始长方形的面积为,变化后长方形的面积为,
∴,,
∴,
∴,
∴,
∵有且只有一个的值,
∴,
∴,
解得(舍去),
故答案为:.
【点睛】本题考查了图形的面积变化,一元二次方程的应用,正确转化为一元二次方程是解题的关键.
10.
【分析】(1)根据正方形的面积公式进行计算即可求解;
(2)根据题意,解方程组得出,根据题意得出,进而得出,根据图2阴影部分的面积为,代入进行计算即可求解.
【详解】解:(1) ,图1阴影部分的面积是,
故答案为:.
(2)∵图1阴影部分的面积为3,图2四边形的面积为,
∴,,即
∴(负值舍去)
∵,.
解得:
∵①
∴,
∴,
∴②
联立①②解得:(为负数舍去)或
∴,
图2阴影部分的面积是
故答案为:.
【点睛】本题考查了整式的乘方与图形的面积,正方形的性质,勾股定理,二元一次方程组,解一元二次方程,正确的计算是解题的关键.
11.
【分析】根据题意分别找出包装盒的长、宽、高,再利用长方体的体积即可列出关于x的方程.
【详解】由包装盒容积为360cm3可得,,
故答案为:.
【点睛】本题主要考查了将实际问题转化为一元二次方程,能够利用长方形的体积列出方程是解题关键.
12.30%
【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x的一元二次方程,解方程即可.
【详解】解:设新注册用户数的年平均增长率为x(),则2020年新注册用户数为100(1+x)万,2021年的新注册用户数为100(1+x)2万户,
依题意得100(1+x)2=169,
解得:x1=0.3,x2=-2.3(不合题意舍去),
∴x=0.3=30%,
故答案为:30%.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
13. 或1 7
【分析】(1)将代入解方程求出,的值,再代入进行验证即可;
(2)当时,求出,再把通分变形,最后进行整体代入求值即可.
【详解】解:已知,实数,同时满足①,②,
①-②得,
∴
∴或
①+②得,
(1)当时,将代入得,
解得,,
∴,
把代入得,3=3,成立;
把代入得,0=0,成立;
∴当时,a的值是1或-2
故答案为:1或-2;
(2)当时,则,即
∵
∴
∴
∴
∴
故答案为:7.
【点睛】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.
14.
【详解】分析:利用判别式的意义得到△=32-4m=0,然后解关于m的方程即可,
详解:根据题意得△=32-4m=0,
解得m=.
故答案为.
点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
15.(只写一个即可)
【分析】设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
【详解】设方程为x2+kx+4=0,由题意得
k2-16=0,
∴k=±4,
∴一次项为(只写一个即可).
故答案为(只写一个即可).
【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份第6章反比例函数(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期数学同步培优单元,共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份第5章特殊平行四边形(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期数学同步培优,共36页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份第4章平行四边形(浙教版-中考真题精选)-浙江省2023-2024学年八年级上学期数学同步培优单元,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。