第3章圆的基本性质-优选提升题(浙教版中考真题精选)-浙江省2023-2024学年上学期九年级数学
展开一、单选题
1.(2023·浙江台州·统考中考真题)如图,的圆心O与正方形的中心重合,已知的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为( ).
A.B.2C.D.
2.(2022·浙江湖州·统考中考真题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连接PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是( )
A.B.6C.D.
3.(2021·浙江衢州·统考中考真题)如图.将菱形ABCD绕点A逆时针旋转得到菱形,.当AC平分时,与满足的数量关系是( )
A.B.
C.D.
4.(2021·浙江金华·统考中考真题)如图,在等腰中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是( )
A.B.C.D.
5.(2021·浙江嘉兴·统考中考真题)如图,在中,,AB=AC=5,点在上,且,点E是AB上的动点,连结,点,G分别是BC,DE的中点,连接,,当AG=FG时,线段长为( )
A.B.C.D.4
6.(2020·浙江绍兴·统考中考真题)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠PAH的度数( )
A.随着θ的增大而增大
B.随着θ的增大而减小
C.不变
D.随着θ的增大,先增大后减小
7.(2020·浙江舟山·统考中考真题)如图,在等腰△ABC中,AB=AC=2,BC=8,按下列步骤作图:
①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于EF的长为半径作弧相交于点H,作射线AH;
②分别以点A,B为圆心,大于AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;
③以点O为圆心,线段OA长为半径作圆.
则⊙O的半径为( )
A.2B.10C.4D.5
8.(2020·浙江舟山·统考中考真题)如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )
A.2B.C.D.
9.(2020·浙江杭州·统考中考真题)如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则( )
A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°
10.(2019·浙江宁波·统考中考真题)如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为( )
A.B.C.D.
二、填空题
11.(2021·浙江温州·统考中考真题)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的的值为 ;记图1中小正方形的中心为点,,,图2中的对应点为点,,.以大正方形的中心为圆心作圆,则当点,,在圆内或圆上时,圆的最小面积为 .
12.(2023·浙江杭州·统考中考真题)如图,六边形是的内接正六边形,设正六边形的面积为,的面积为,则 .
13.(2023·浙江金华·统考中考真题)如图,在中,,以为直径作半圆,交于点,交于点,则弧的长为 .
14.(2023·浙江金华·统考中考真题)在直角坐标系中,点绕原点逆时针方向旋转,得到的点的坐标是 .
15.(2022·浙江丽水·统考中考真题)三个能够重合的正六边形的位置如图.已知B点的坐标是,则A点的坐标是 .
16.(2020·浙江湖州·统考中考真题)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8.AB=10,则CD与AB之间的距离是 .
17.(2020·浙江温州·统考模拟预测)若扇形的圆心角为45°,半径为3,则该扇形的弧长为 .
18.(2020·浙江宁波·统考中考真题)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为 cm(结果保留π).
三、解答题
19.(2021·浙江金华·统考中考真题)在扇形中,半径,点P在OA上,连结PB,将沿PB折叠得到.
(1)如图1,若,且与所在的圆相切于点B.
①求的度数.
②求AP的长.
(2)如图2,与相交于点D,若点D为的中点,且,求的长.
20.(2020·浙江·统考中考真题)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF,
(1)求证:△BEF是直角三角形;
(2)求证:△BEF∽△BCA;
(3)当AB=6,BC=m时,在线段CM正存在点E,使得EF和AB互相平分,求m的值.
21.(2023·浙江金华·统考中考真题)如图,点在第一象限内,与轴相切于点,与轴相交于点.连接,过点作于点.
(1)求证:四边形为矩形.
(2)已知的半径为4,,求弦的长.
22.(2023·浙江·统考中考真题)某数学兴趣小组活动,准备将一张三角形纸片(如图)进行如下操作,并进行猜想和证明.
(1)用三角板分别取的中点,连接,画于点;
(2)用(1)中所画的三块图形经过旋转或平移拼出一个四边形(无缝隙无重叠),并用三角板画出示意图;
(3)请判断(2)中所拼的四边形的形状,并说明理由.
23.(2022·浙江衢州·统考中考真题)如图,是以为直径的半圆上的两点,,连结.
(1)求证:.
(2)若,,求阴影部分的面积.
24.(2022·浙江金华·统考中考真题)如图1,正五边形内接于⊙,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径;②以F为圆心,为半径作圆弧,与⊙交于点M,N;③连接.
(1)求的度数.
(2)是正三角形吗?请说明理由.
(3)从点A开始,以长为半径,在⊙上依次截取点,再依次连接这些分点,得到正n边形,求n的值.
参考答案:
1.D
【分析】设正方形四个顶点分别为,连接并延长,交于点,由题意可得,的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.
【详解】解:设正方形四个顶点分别为,连接并延长,交于点,过点作,如下图:
则的长度为圆上任意一点到正方形边上任意一点距离的最小值,
由题意可得:,
由勾股定理可得:,
∴,
故选:D
【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.
2.C
【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M、N作以点O为圆心,∠MON=90°的圆,则点P在所作的圆上,观察圆O所经过的格点,找出到点M距离最大的点即可求出.
【详解】作线段MN中点Q,作MN的垂直平分线OQ,并使OQ=MN,以O为圆心,OM为半径作圆,如图,
因为OQ为MN垂直平分线且OQ=MN,所以OQ=MQ=NQ,
∴∠OMQ=∠ONQ=45°,
∴∠MON=90°,
所以弦MN所对的圆O的圆周角为45°,
所以点P在圆O上,PM为圆O的弦,
通过图像可知,当点P在位置时,恰好过格点且经过圆心O,
所以此时最大,等于圆O的直径,
∵BM=4,BN=2,
∴,
∴MQ=OQ=,
∴OM=,
∴,
故选 C.
【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.
3.C
【分析】根据菱形的性质可得AB=AC,根据等腰三角形的性质可得∠BAC=∠BCA=,根据旋转的性质可得∠CAC′=∠BAB′=,根据AC平分可得∠B′AC=∠CAC=,即可得出,可得答案.
【详解】∵四边形ABCD是菱形,,
∴AB=AC,
∴∠BAC=∠BCA==,
∵将菱形ABCD绕点A逆时针旋转得到菱形,
∴∠CAC′=∠BAB′=,
∵AC平分,
∴∠B′AC=∠CAC=,
∴∠BAC=∠B′AC+∠BAB′=2=,
∴,
故选;C.
【点睛】本题考查旋转的性质及菱形的性质,熟练掌握相关性质并正确找出旋转角是解题关键.
4.C
【分析】先确定圆的圆心在直角三角形斜边的中点,然后利用全等三角形的判定和性质确定△ABC是等腰直角三角形,再根据直角三角形斜边中线的性质得到,再由勾股定理解得,解得,据此解题即可.
【详解】解:如图所示,正方形的顶点都在同一个圆上,
圆心在线段的中垂线的交点上,即在斜边的中点,且AC=MC,BC=CG,
∴AG=AC+CG=AC+BC,BM=BC+CM=BC+AC,
∴AG=BM,
又∵OG=OM,OA=OB,
∴△AOG≌△BOM,
∴∠CAB=∠CBA,
∵∠ACB=90°,
∴∠CAB=∠CBA=45°,
,
,
.
故选:C.
【点睛】本题考查勾股定理、直角三角形斜边的中线的性质、圆的面积、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.
5.A
【分析】连接DF,EF,过点F作FN⊥AC,FM⊥AB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,∠DFE=90°,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求解.
【详解】解:连接DF,EF,过点F作FN⊥AC,FM⊥AB
∵在中,,点G是DE的中点,
∴AG=DG=EG
又∵AG=FG
∴点A,D,F,E四点共圆,且DE是圆的直径
∴∠DFE=90°
∵在Rt△ABC中,AB=AC=5,点是BC的中点,
∴CF=BF=,FN=FM=
又∵FN⊥AC,FM⊥AB,
∴四边形NAMF是正方形
∴AN=AM=FN=
又∵,
∴
∴△NFD≌△MFE
∴ME=DN=AN-AD=
∴AE=AM+ME=3
∴在Rt△DAE中,DE=
故选:A.
【点睛】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.
6.C
【分析】由旋转的性质可得BC=BP=BA,由等腰三角形的性质和三角形内角和定理可求∠BPC+∠BPA=135°=∠CPA,由外角的性质可求∠PAH=135°﹣90°=45°,即可求解.
【详解】解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,
∴BC=BP=BA,
∴∠BCP=∠BPC,∠BPA=∠BAP,
∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BPA=180°,∠ABP+∠CBP=90°,
∴∠BPC+∠BPA=135°=∠CPA,
∵∠CPA=∠AHC+∠PAH=135°,
∴∠PAH=135°﹣90°=45°,
∴∠PAH的度数是定值,
故选:C.
【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的外角性质,灵活运用这些性质解决问题是本题的关键.
7.D
【分析】如图,设OA交BC于T.解直角三角形求出AT,再在Rt△OCT中,利用勾股定理构建方程即可解决问题.
【详解】解:如图,设OA交BC于T.
∵AB=AC=2,AO平分∠BAC,
∴AO⊥BC,BT=TC=4,
∴AE=,
在Rt△OCT中,则有r2=(r﹣2)2+42,
解得r=5,
故选:D.
【点睛】本题考查作图——复杂作图,等腰三角形的性质,垂径定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
8.C
【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.
【详解】解:作AM⊥BC于M,如图:
重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.
∵△ABC是等边三角形,AM⊥BC,
∴AB=BC=3,BM=CM=BC=,∠BAM=30°,
∴AM=BM=,
∴△ABC的面积=BC×AM=×3×=,
∴重叠部分的面积=△ABC的面积=;
故选:C.
【点睛】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键.
9.D
【分析】根据直角三角形两锐角互余性质,用α表示∠CBD,进而由圆心角与圆周角关系,用α表示∠COD,最后由角的和差关系得结果.
【详解】解:∵OA⊥BC,
∴∠AOB=∠AOC=90°,
∴∠DBC=90°﹣∠BEO
=90°﹣∠AED
=90°﹣α,
∴∠COD=2∠DBC
=180°﹣2α,
∵∠AOD+∠COD=90°,
∴β+180°﹣2α=90°,
∴2α﹣β=90°,
故选:D.
【点睛】本题考查了圆周角定理以及直角三角形的两个锐角互余的关系,熟练掌握圆周角定理是解决本题的关键.
10.B
【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.
【详解】设,则DE=(6-x)cm,
由题意,得,
解得.
故选B.
【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
11.
【分析】(1)先求出剪拼后大正方形的面积,得到其边长,再结合图2,求出图1中长方形的长边除去长为d部分的线段后,剩下的线段长刚好为大正方形的边长,最后用图1中的长方形的长减去图2中大正方形的边长即可完成求解;
(2)结合两图分别求出对应线段的长,通过作辅助线构造直角三角形,利用勾股定理求出O点到、、之间的距离即可确定最小圆的半径,即可完成求解.
【详解】解:∵图1是邻边长为2和6的矩形,它由三个小正方形组成,
∴每个小正方形边长为2,图1和图2中整个图形的面积为,
所以图2中正方形的边长,如下图3所示;
∴图1中,;
分别连接、、,并分别过点、、向大正方形的对边作垂线,得到如图所示辅助线,
综合两图可知,,,,O点到大正方形各边距离为,
∴,,
∴;
综合两图可知:,,,
∴,,
∴;
继续综合两图可知:,
∴,
∴,
∵,
∴距离O点最远,
∴最小圆的半径应为,
∴圆的面积为;
故答案为:;.
【点睛】本题考查了正方形和长方形的基础知识、线段之间的和差关系、完全平方公式、勾股定理、圆的面积公式等内容,解决本题的关键是理解题意、读懂图形、找出两个图形之间的关联、能灵活运用勾股定理等公式求解线段的长等;本题要求学生对图形具有一定的感知能力,有较强的计算能力等,该题蕴含了数形结合等思想方法.
12.2
【分析】连接,首先证明出是的内接正三角形,然后证明出,得到,,进而求解即可.
【详解】如图所示,连接,
∵六边形是的内接正六边形,
∴,
∴是的内接正三角形,
∵,,
∴,
∵,
∴,
∴,
同理可得,,
又∵,
∴,
∴,
由圆和正六边形的性质可得,,
由圆和正三角形的性质可得,,
∵,
∴.
故答案为:2.
【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.
13./
【分析】连接,,,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.
【详解】解:如图,连接,,,
∵为直径,
∴,
∵,
∴,,
∴,,
∴弧的长为,
故答案为:.
【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.
14.
【分析】把点绕原点旋转的问题转化为直角三角形旋转的问题,画出图形可解决问题.
【详解】解:过A点作轴,过B点作轴,
∵点A的坐标为,
∴,
∵,
∴,
∵,
∴,
∵,
在和中,
,
∴,
∴,
∴点B的坐标为,
故答案为:.
【点睛】本题考查坐标与图形变化-旋转,解题的关键是正确作出图形解决问题.
15.
【分析】如图,延长正六边形的边BM与x轴交于点E,过A作轴于N,连接AO,BO,证明可得三点共线,可得关于O对称,从而可得答案.
【详解】解:如图,延长正六边形的边BM与x轴交于点E,过A作轴于N,连接AO,BO,
三个正六边形,O为原点,
同理:
三点共线,
关于O对称,
故答案为:
【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.
16.3
【分析】过点O作OH⊥CD于H,连接OC,先利用垂径定理得到CH=4,然后在Rt△OCH中,利用勾股定理即可求解.
【详解】解:过点O作OH⊥CD于H,
连接OC,如图,则CH=DH=CD=4,
在Rt△OCH中,OH==3,
所以CD与AB之间的距离是3.
故答案为3.
【点睛】此题主要考查垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题关键.
17.
【分析】根据弧长公式求解.
【详解】.
故答案为:.
【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式.
18.18π
【分析】根据弧长公式即可得到结论.
【详解】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,
∴的长==18π(cm),
故答案为:18π.
【点睛】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.
19.(1)①60°;②;(2)
【分析】(1)根据图像折叠的性质,确定角之间的关系,通过已知的角度来间接求所求角的角度;求的长,先连接,先在中,求出;再在中,求出即可得到答案;
(2)要求的长,扇形的半径已知,就转化成求的度数,连接,通过条件找到角之间的等量关系,再根据三角形内角和为,建立等式求出,最后利用弧长的计算公式进行计算.
【详解】解:(1)①如图1,为圆的切线.
由题意可得,,.
,
②如图1,连结,交BP于点Q.则有.
在中,.
在中,,
.
(2)如图2.连结OD.设.
∵点D为的中点.
.
由题意可得,.
又
,,解得.
.
【点睛】本题考查了求线段的长度和弧长的长度问题,解题的关键是:根据题目中的条件,找到边角之间的等量关系,通过等量代换的思想间接求出所需要求的量.
20.(1)见解析;(2)见解析;(3)
【分析】(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).
(2)根据两角对应相等两三角形相似证明.
(3)证明四边形AFBE是平行四边形,推出FJ=BD=m,EF=m,由△ABC∽△CBM,可得BM=,由△BEF∽△BCA,推出,由此构建方程求解即可.
【详解】(1)证明:由折叠可知,∠ADB=∠ACB=90°
∵∠EFB=∠EDB,∠EBF=∠EDF,
∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,
∴∠BEF=90°,
∴△BEF是直角三角形.
(2) 证明:∵BC=BD,
∴∠BDC=∠BCD,
∵∠EFB=∠EDB,
∴∠EFB=∠BCD,
∵AC=AD,BC=BD,
∴AB⊥CD,
∴∠AMC=90°,
∵∠BCD+∠ACD=∠ACD+∠CAB=90°,
∴∠BCD=∠CAB,
∴∠BFE=∠CAB,
∵∠ACB=∠FEB=90°,
∴△BEF∽△BCA.
(3) 设EF交AB于J.连接AE,如下图所示:
∵EF与AB互相平分,
∴四边形AFBE是平行四边形,
∴∠EFA=∠FEB=90°,即EF⊥AD,
∵BD⊥AD,
∴EF∥BD,
∵AJ=JB,
∴AF=DF,
∴ FJ=
∴ EF=
∵ △ABC∽△CBM
∴ BC:MB=AB:BC
∴ BM=,
∵ △BEJ∽△BME,
∴ BE:BM=BJ:BE
∴ BE=,
∵ △BEF∽△BCA,
∴
即
解得(负根舍去).
故答案为:
【点睛】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.
21.(1)见解析
(2)
【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.
(2)根据矩形的性质、垂径定理及圆的性质计算即可.
【详解】(1)证明:∵与轴相切于点,
∴轴.
∵,
∴,
∴四边形是矩形.
(2)如图,连接.
四边形是矩形,
.
在中,,
.
点为圆心,,
.
【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.
22.(1)见解析
(2)见解析
(3)答案不唯一,见解析
【分析】(1)根据题意画出图形即可;
(2)方法一:将绕点D逆时针旋转到,将绕E点顺时针旋转到即可得出四边形;
方法二:将绕E点顺时针旋转到,将绕点D逆时针旋转后再沿向右平移到,即可得出四边形;
方法三:将绕点D逆时针旋转到,将绕E点顺时针旋转后沿向左平移到,即可得出四边形;
(3)方法一:先证明点在同一直线上,根据为的中位线,得出且.证明且,得出四边形为平行四边形,根据,得出平行四边形为矩形.
方法二:证明点在同一直线上,根据为的中位线,得出且,证明,得出且,证明四边形为平行四边形.
方法三:证明点在同一直线上,根据为的中位线,得出且,证明且,得出四边形为平行四边形.
【详解】(1)解:如图所示:
(2)解:方法一:四边形为所求作的四边形
方法二:四边形是所求的四边形.
方法三:四边形是所求的四边形.
(3)解:方法一(图1),
∵,
∴点在同一直线上,
∵点分别是的中点,
∴为的中位线,
∴且.
∵,
∴且,
∴四边形为平行四边形.
∵,,
∴平行四边形为矩形.
方法二(图2),
∵,
∴点在同一直线上.
∵点分别是的中点,
∴为的中位线,
∴且.
∵,
∴且,
∴四边形为平行四边形.
方法三(图3),
∵,
∴点在同一直线上.
∵点分别是的中点,
∴为的中位线,
∴且.
∵,
∴且,
∴四边形为平行四边形.
【点睛】本题主要考查了旋转作图或平移作图,平行四边形的判定,矩形的判定,解题的关键熟练掌握旋转的性质和平移的性质.
23.(1)答案见解析
(2)
【分析】(1)根据同弧所对的圆周角相等得到∠ACD=∠DBA,根据 ∠CAB=∠DBA得到∠CAB=∠ACD,进而得到结论;
(2)连结OC,OD,证明所求的阴影部分面积与扇形的面积相等,继而得到结论.
【详解】(1)证明:∵=,
∴∠ACD=∠DBA,
又∠CAB=∠DBA,
∴∠CAB=∠ACD,
∴;
(2)解:如图,连结OC,OD.
∵∠ACD=30°,
∴∠ACD=∠CAB=30°,
∴∠AOD=∠COB=60°,
∴∠COD=180°-∠AOD-∠COB=60°.
∵,
∴S△DOC=S△DBC,
∴S阴影=S弓形COD+S△DOC=S弓形COD+S△DBC=S扇形COD,
∵AB=4,
∴OA=2,
∴S扇形COD=.
∴S阴影=.
【点睛】本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.
24.(1)
(2)是正三角形,理由见解析
(3)
【分析】(1)根据正五边形的性质以及圆的性质可得,则(优弧所对圆心角),然后根据圆周角定理即可得出结论;
(2)根据所作图形以及圆周角定理即可得出结论;
(3)运用圆周角定理并结合(1)(2)中结论得出,即可得出结论.
【详解】(1)解:∵正五边形.
∴,
∴,
∵,
∴(优弧所对圆心角),
∴;
(2)解:是正三角形,理由如下:
连接,
由作图知:,
∵,
∴,
∴是正三角形,
∴,
∴,
同理,
∴,即,
∴是正三角形;
(3)∵是正三角形,
∴.
∵,
∴,
∵,
∴,
∴.
【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.
第1章解直角三角形-优选提升题(浙教版中考真题精选)-浙江省2023-2024学年九年级下册数学期: 这是一份第1章解直角三角形-优选提升题(浙教版中考真题精选)-浙江省2023-2024学年九年级下册数学期,共39页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
第1章解直角三角形-经典基础题(浙教版中考真题精选)-浙江省2023-2024学年九年级下册数学期: 这是一份第1章解直角三角形-经典基础题(浙教版中考真题精选)-浙江省2023-2024学年九年级下册数学期,共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
第4章相似三角形-经典基础题(浙教版中考真题精选)-浙江省2023-2024学年上学期九年级数学期: 这是一份第4章相似三角形-经典基础题(浙教版中考真题精选)-浙江省2023-2024学年上学期九年级数学期,共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。