微专题12 空间中的平行与垂直关系(几何法、向量法)
展开【真题体验】
1.(2022·全国乙卷)在正方体ABCD-A1B1C1D1中,E,F分别为AB,BC的中点,则( )
A.平面B1EF⊥平面BDD1
B.平面B1EF⊥平面A1BD
C.平面B1EF∥平面A1AC
D.平面B1EF∥平面A1C1D
2.(2021·浙江卷)如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B的中点,则( )
A.直线A1D与直线D1B垂直,直线MN∥平面ABCD
B.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1
C.直线A1D与直线D1B相交,直线MN∥平面ABCD
D.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1
3.(2023·全国甲卷)如图,在三棱柱ABC-A1B1C1中,A1C⊥平面ABC,∠ACB=90°.
(1)证明:平面ACC1A1⊥平面BB1C1C;
(2)设AB=A1B,AA1=2,求四棱锥A1-BB1C1C的高.
4.(2023·全国乙卷)如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=2eq \r(2),PB=PC=eq \r(6),BP,AP,BC的中点分别为D,E,O,点F在AC上,BF⊥AO.
(1)求证:EF∥平面ADO;
(2)若∠POF=120°,求三棱锥P-ABC的体积.
【热点突破】
热点一 空间线面位置关系的判定
判断空间线、面位置关系的常用方法
(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断;
(2)利用直线的方向向量、平面的法向量判断;
(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.
例1 (1)(多选)(2023·淄博模拟)若m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的有( )
A.若α∥β,m⊂α,则m∥β
B.若α⊥β,m⊥α,则m∥β
C.若m∥n,m⊥α,则n⊥α
D.若m⊥n,m∥α,则n∥α
(2)(多选)(2023·茂名五校联考)已知正方体ABCD-A1B1C1D1中,点O是底面ABCD的中心,点M是侧面BB1C1C内的一个动点(含边界),且OM∥平面C1A1D,则以下关系一定正确的是( )
A.OM∥DC1 B.VM-C1A1D=VC-C1A1D
C.OM⊥B1C D.OM⊥BD1
易错提醒 1.易遗漏定理中的条件.
2.易直接将平面几何中的结论应用到立体几何中.
训练1 (1)(2023·贵州适应性测试)如图,在四面体ABCD中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是( )
A.平面ABC⊥平面ABDB.平面ABD⊥平面BDC
C.平面ABC⊥平面BDED.平面ABC⊥平面ADC
(2)(2023·酒泉调研)已知l,m表示两条不同的直线,α,β表示两个不同的平面,l⊥α,m⊂β,则有下面四个命题:
①若α∥β,则l⊥m;②若α⊥β,则l∥m;③若l∥m,则α⊥β;④若l⊥m,则α∥β.
其中所有真命题是________.(填序号)
热点二 几何法证明平行、垂直
1.直线、平面平行的判定及其性质
(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.
(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.
(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.
(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.
2.直线、平面垂直的判定及其性质
(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.
(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.
(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.
(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
例2 如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.求证:
(1)PE⊥BC;
(2)平面PAB⊥平面PCD;
(3)EF∥平面PCD.
规律方法 平行关系及垂直关系的转化
训练2 如图所示,在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:
(1)AB∥平面A1B1C;
(2)平面ABB1A1⊥平面A1BC.
热点三 向量法证明平行、垂直
1.用向量证明空间中的平行关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.
(2)设直线l的方向向量为v,在平面α内的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=xv1+yv2.
(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.
(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.
2.用向量证明空间中的垂直关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.
(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.
(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.
例3 如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
求证:(1)BE⊥DC;
(2)BE∥平面PAD;
(3)平面PCD⊥平面PAD.
规律方法 利用向量证明线面平行的三种方法
(1)证直线的方向向量与平面内的一条直线的方向向量平行;
(2)证直线的方向向量与平面的法向量垂直;
(3)证直线的方向向量能写为平面内两不共线向量的线性表达式.
训练3 如图所示,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.
微专题13 空间角、距离的计算(几何法、向量法): 这是一份微专题13 空间角、距离的计算(几何法、向量法),共8页。
微专题13 空间角、距离的计算(几何法、向量法): 这是一份微专题13 空间角、距离的计算(几何法、向量法),共4页。试卷主要包含了基本技能练,创新拓展练等内容,欢迎下载使用。
微专题12 空间中的平行与垂直关系(几何法、向量法): 这是一份微专题12 空间中的平行与垂直关系(几何法、向量法),共6页。试卷主要包含了基本技能练,创新拓展练等内容,欢迎下载使用。