北京大兴北臧村中学2023-2024学年数学八年级第一学期期末考试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.设a,b是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0;②a*b=b*a;③a*(b+c)=a*b+a*c;④a*b=(﹣a)*(﹣b).正确的有( )个.
A.1B.2C.3D.4
2.正方形的边长为,其面积记为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积为,…按此规律继续下去,则的值为( )
A.B.C.D.
3.以下列各组线段长为边,不能组成三角形的是( )
A.8cm,7cm,13cm B.6cm,6cm,12cm C.5cm,5cm,2cm D.10cm,15cm,17cm
4.下列命题是假命题的是( )
A.有一个角是60°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.线段垂直平分线上的点到线段两端的距离相等
5.下列运算正确的是( )
A.a2·a3=a6B.(-a2)3=-a5
C.a10÷a9=a(a≠0)D.(-bc)4÷(-bc)2=-b2c2
6.满足下列条件的△ABC,不是直角三角形的为( )
A.∠A=∠B-∠CB.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶4
7.如图,已知为的中点,若,则( )
A.5B.6C.7D.
8.如图,在和中,连接AC,BD交于点M,AC与OD相交于E,BD与OA相较于F,连接OM,则下列结论中:①;②;③;④MO平分,正确的个数有( )
A.4个B.3个C.2个D.1个
9.如图比较大小,已知OA=OB,数轴点A所表示的数为a( )﹣.
A.>B.<C.≥D.=
10.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心大于的长为半径画弧,两弧交于点,作射线交边于点,若,则的面积是( )
A.15B.18C.36D.72
二、填空题(每小题3分,共24分)
11.已知一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式:_____.
12.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.
(1)的度数是_____________;
(2)当为直角三角形时,点E的坐标是________________.
13.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)
①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).
14.在函数中,自变量x的取值范围是___.
15.关于一次函数有如下说法:①当时,随的增大而减小;②当时,函数图象经过一、 二、三象限;③函数图象一定经过点;④将直线向下移动个单位长度后所得直线表达式为.其中说法正确的序号是__________.
16.计算(2a)3的结果等于__.
17.为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是,从稳定性的角度看,_________的成绩更稳定.(填“甲”或“乙”)
18.已知,,,,…,根据此变形规律计算:++++…++______.
三、解答题(共66分)
19.(10分)如图,已知直线与轴,轴分别交于点,,与直线交于点.点从点出发以每秒1个单位的速度向点运动,运动时间设为秒.
(1)求点的坐标;
(2)求下列情形的值;
①连结,把的面积平分;
②连结,若为直角三角形.
20.(6分)已知一次函数y1=kx+b(其中k、b为常数且k≠0)
(1)若一次函数y2=bx﹣k,y1与y2的图象交于点(2,3),求k,b的值;
(2)若b=k﹣1,当﹣2≤x≤2时,函数有最大值3,求此时一次函数y1的表达式.
21.(6分)某商场第一次用元购进某款机器人进行销售,很快销售一空,商家又用元第二次购进同款机器人,所购进数量是第一次的倍,但单价贵了元.
(1)求该商家第一次购进机器人多少个?
(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于不考虑其他因素,那么每个机器人的标价至少是多少元?
22.(8分)如图1,将等腰直角三角形绕点顺时针旋转至,为上一点,且,连接、,作的平分线交于点,连接.
(1)若,求的长;
(2)求证:;
(3)如图2,为延长线上一点,连接,作垂直于,垂足为,连接,请直接写出的值.
23.(8分)老师在黑板上书写了一个式子的正确计算结果随后用手遮住了原式的一部分,如图.
(1)求被手遮住部分的式子(最简形式);
(2)原式的计算结果能等于一1吗?请说明理由.
24.(8分)先化简,再求值:,其中x满足.
25.(10分)如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.
(1)求证:AD∥BC;
(2)CD与EF平行吗?写出证明过程;
(3)若DF平分∠ADC,求证:CE⊥DF.
26.(10分)一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.
(1)求出该一次函数的表达式;
(2)画出该一次函数的图象;
(3)判断(﹣5,﹣4)是否在这个函数的图象上?
(4)求出该函数图象与坐标轴围成的三角形面积.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、A
3、B
4、C
5、C
6、D
7、A
8、B
9、A
10、B
二、填空题(每小题3分,共24分)
11、y=x+1
12、30° (1,)或(2,)
13、①③
14、
15、②
16、8
17、甲.
18、
三、解答题(共66分)
19、(1)点C的坐标为;(2)①t的值为2;②t的值为或.
20、(1);(2)y1=x或y1=﹣3x﹣1
21、(1)该商家第一次购进机器人1个;(2)每个机器人的标价至少是140元.
22、(1);(2)见解析;(3)
23、(1);(2)不能,理由见解析
24、,1.
25、(1)详见解析;(2)CD∥EF,证明详见解析;(3)详见解析.
26、(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4).
北京大兴区北臧村中学2023-2024学年数学九上期末调研试题含答案: 这是一份北京大兴区北臧村中学2023-2024学年数学九上期末调研试题含答案,共7页。试卷主要包含了若,,则的值为,抛物线y=x2﹣4x+2不经过等内容,欢迎下载使用。
北京大兴北臧村中学2023-2024学年九年级数学第一学期期末预测试题含答案: 这是一份北京大兴北臧村中学2023-2024学年九年级数学第一学期期末预测试题含答案,共8页。试卷主要包含了cs60°的值等于等内容,欢迎下载使用。
北京大兴区北臧村中学2023-2024学年八上数学期末学业质量监测模拟试题含答案: 这是一份北京大兴区北臧村中学2023-2024学年八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了如果点P等内容,欢迎下载使用。