——度河北省正定县2023-2024学年八上数学期末综合测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( )
A.4种B.3种C.2种D.1种
2.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数( )
A.5个B.4个C.3个D.2个
3.下列关于分式方程增根的说法正确的是( )
A.使所有的分母的值都为零的解是增根
B.分式方程的解为零就是增根
C.使分子的值为零的解就是增根
D.使最简公分母的值为零的解是增根
4.A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是( )
①甲骑车速度为30km/小时,乙的速度为20km/小时;
②l1的函数表达式为y=80﹣30x;
③l2的函数表达式为y=20x;
④小时后两人相遇.
A.1个B.2个C.3个D.4个
5.下列结论中,错误的有( )
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;
②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;
A.0个B.1个C.2个D.3个
6.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF⊥AB,垂足为F,则EF的长为( )
A.1B.C.4-2D.3-4
7.下列选项中,可以用来说明命题“若,则”属于假命题的反例是( )
A.,B.,
C.,D.,
8.已知点和在一次函数的图象上,则与的大小关系是( )
A.B.C.D.
9.下列线段长能构成三角形的是( )
A.3、4、7B.2、3、6C.5、6、11D.4、7、10
10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).
A.45°B.60°C.75°D.85°
二、填空题(每小题3分,共24分)
11.计算: =________.
12.分解因式:4a﹣a3=_____.
13.若,,则_____________.
14.如图是一副三角尺拼成图案,则∠AEB=_____度.
15.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为__________.
16.如果一粒芝麻约有0.000002千克,那么10粒芝麻用科学记数法表示为_______千克.
17.如图,由两个直角三角形和三个正方形组成的图形,已知 , 其中阴影部分面积是_____________平方单位.
18.若关于x的分式方程=1的解是非负数,则m的取值范围是_____.
三、解答题(共66分)
19.(10分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,OE⊥AB,OF⊥AC,垂足分别为E,F.求证:AB=AC;
(2)如图,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
20.(6分)如图所示,在正方形网格中,若点的坐标是,点的坐标是,按要求解答下列问题:
(1)在图中建立正确的平面直角坐标系,写出点C的坐标.
(2)在图中作出△ABC关于x轴对称的△A1B1C1.
21.(6分)在中,,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接.
当点在线段上时,
①若点与点重合时,请说明线段;
②如图2,若点不与点重合,请说明;
当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明).
22.(8分)基本图形:在RT△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.
探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;
(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;
联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=7,CD=2,则AD的长为 .
23.(8分)定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.
(1)如图1,△ABC中,AB=AC,∠A为36°,求证:△ABC 是锐角三角形;
(2)若△ABC是倍角三角形,,∠B=30°,AC=,求△ABC面积;
(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.
24.(8分)如图,已知△ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).
(1)画出△ABC关于原点O成中心对称的图形△A′B′C′;
(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A″B″C″,并写出点B″的坐标.
25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
26.(10分) “绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等
(1)求每台型、型净水器的进价各是多少元?
(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、D
4、D
5、C
6、C
7、C
8、A
9、D
10、C
二、填空题(每小题3分,共24分)
11、1
12、a(2+a)(2﹣a).
13、
14、75º
15、20°
16、2×10-1.
17、49
18、m≥﹣4且m≠﹣1
三、解答题(共66分)
19、(1)见解析;(2)见解析;(3)不一定成立,见解析.
20、 (1)见解析;C(3,2);(2)见解析.
21、(1)①证明见解析;②证明见解析;(2)BF=AE-CD
22、(1)结论:.证明见解析;(2)结论:.证明见解析;(3)
23、(1)证明见解析;(2);(3)△ADC是倍角三角形,证明见解析.
24、见解析
25、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.
26、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;
(2)最多可以购买A型净水器40台.
河北省正定县2023-2024学年数学九上期末经典试题含答案: 这是一份河北省正定县2023-2024学年数学九上期末经典试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,是一元二次方程的是等内容,欢迎下载使用。
——度江西省赣县2023-2024学年九上数学期末综合测试模拟试题含答案: 这是一份——度江西省赣县2023-2024学年九上数学期末综合测试模拟试题含答案,共8页。试卷主要包含了方程x2=x的解是,如图,在平行四边形中等内容,欢迎下载使用。
2023-2024学年河北省石家庄市正定县九上数学期末质量检测试题含答案: 这是一份2023-2024学年河北省石家庄市正定县九上数学期末质量检测试题含答案,共8页。