2023-2024学年湖北省武汉东湖高新区六校联考八上数学期末复习检测试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.在平面直角坐标系中,将点P(1,4)向左平移3个单位长度得到点Q,则点Q所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2.同学们都玩过跷跷板的游戏,如图是一个跷跷板的示意图,立柱OC与地面垂直,OA=OB.当跷跷板的一头A着地时,∠AOA′=50°,则当跷跷板的另一头B着地时,∠COB′等于( )
A.25°B.50°C.65°D.130°
3.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是( )
A.20米B.15米C.10米D.5米
4.下列各式属于最简二次根式的是( )
A.B.C.D.
5.若点A(n,m)在第四象限,则点B(m2,﹣n)( )
A.第四象限B.第三象限C.第二象限D.第一象限
6.由下列条件不能判断△ABC是直角三角形的是( )
A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5
C.∠A+∠B=∠CD.AB2=BC2+AC2
7.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )
A.SSSB.SASC.AASD.ASA
8.以不在同一直线上的三个点为顶点作平行四边形最多能作( )
A.4个B.3个C.2个D.1个
9.下列代数式中,属于分式的是( )
A.﹣3B.C.D.
10.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为( )
A.0.34×10-6米B.3.4×10-6米C.34×10-5米D.3.4×10-5米
二、填空题(每小题3分,共24分)
11.如果正方形的边长为4,为边上一点,,为线段上一点,射线交正方形的一边于点,且,那么的长为__________.
12.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC,点 M,N 在边 BC 上,且∠MAN=45°.若 BM=1, CN=3,则 MN 的长为 .
13.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为__________.
14.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为______.
15.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________
16.若点,在正比例函数图像上,请写出正比例函数的表达式__________.
17.三角形的三个内角分别为75°,80°,25°,现有一条直线将它分成两个等腰三角形,那么这两个等腰三角形的顶角的度数分别是_____.
18.一组数据的平均数为,另一组数据,的中位数为___________.
三、解答题(共66分)
19.(10分)阅读下面的解答过程,求y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.
仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.
20.(6分)如图,点C,F,B,E在同一条直线上,AC⊥CE,DF⊥CE,垂足分别为C,F,且AB=DE,CF=BE.求证:∠A=∠D.
21.(6分)如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:AB=AC.
22.(8分)(习题再现)课本中有这样一道题目:如图,在四边形中,分别是的中点,.求证:.(不用证明)
(习题变式)(1)如图,在“习题再现”的条件下,延长与交于点,与交于点,求证:.
(2)如图,在中,,点在上,,分别是的中点,连接并延长,交的延长线于点,连接,,求证:.
23.(8分)阅读下列材料:
利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.
运用多项式的配方法及平方差公式能对一些多项式进行分解因式.
例如:
根据以上材料,解答下列问题:
(1)用多项式的配方法将化成的形式;
(2)利用上面阅读材料的方法,把多项式进行因式分解;
(3)求证:,取任何实数时,多项式的值总为正数.
24.(8分)(1)计算:.
(2)先化简,再求值:,其中:.
25.(10分)已知一次函数与的图象都经过点且与轴分别交于,两点.
(1)分别求出这两个一次函数的解析式.
(2)求的面积.
26.(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
治理杨絮一一您选哪一项?(单选)
A.减少杨树新增面积,控制杨树每年的栽种量
B.调整树种结构,逐渐更换现有杨树
C.选育无絮杨品种,并推广种植
D.对雌性杨树注射生物干扰素,避免产生飞絮
E.其他
根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有 人;
(2)扇形统计图中,扇形E的圆心角度数是 ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、B
5、A
6、A
7、D
8、B
9、D
10、B
二、填空题(每小题3分,共24分)
11、或
12、.
13、(4,2)
14、6.9×10﹣1.
15、120°或75°或30°
16、
17、80°,130°
18、
三、解答题(共66分)
19、; 5
20、详见解析
21、证明见解析.
22、(1)见解析;(2)见解析
23、(1);(2);(3)见解析
24、(1);(2)a2−2a+6 ,1
25、(1)和;(2)
26、(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.
湖北省武汉东湖高新区2023-2024学年九上数学期末复习检测试题含答案: 这是一份湖北省武汉东湖高新区2023-2024学年九上数学期末复习检测试题含答案,共8页。试卷主要包含了如图,正方形的边长为,点在边上等内容,欢迎下载使用。
湖北省武汉东湖高新区六校联考2023-2024学年数学九上期末统考模拟试题含答案: 这是一份湖北省武汉东湖高新区六校联考2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了下列事件中是必然事件的是等内容,欢迎下载使用。
2023-2024学年湖北省武汉市东湖高新区九上数学期末经典试题含答案: 这是一份2023-2024学年湖北省武汉市东湖高新区九上数学期末经典试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程中是一元二次方程的是,下列命题是真命题的个数是等内容,欢迎下载使用。