2023-2024学年四川省资阳安岳县联考数学八年级第一学期期末达标测试试题含答案
展开这是一份2023-2024学年四川省资阳安岳县联考数学八年级第一学期期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,把分式方程化为整式方程正确的是,若使分式有意义,则的取值范围是,化简,其结果是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.已知为常数,点在第二象限,则关于的方程根的情况是( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.无法判断
2.生物学家发现了一种病毒,其长度约为,将数据0. 00000032用科学记数法表示正确的是( )
A.B.C.D.
3.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有( )个.
A.1B.2C.3D.4
4.已知△ABC的一个外角为70°,则△ABC一定是( )
A.锐角三角形B.直角三角形
C.钝角三角形D.锐角三角形或钝角三角形
5.把分式方程化为整式方程正确的是( )
A.B.
C.D.
6.若使分式有意义,则的取值范围是( )
A.B.C.D.
7.中国科学院微电子研究所微电子设备与集成技术领域的专家殷华湘说,他的团队已经研发出纳米(米纳米)晶体管.将纳米换算成米用科学记数法表示为( )
A.米B.米C.米D.米
8.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒
A.2.5B.3C.3.5D.4
9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).
A.45°B.60°C.75°D.85°
10.化简,其结果是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在的同侧,,点为的中点,若,则的最大值是_____.
12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为_____.
13.如图,数轴上两点到原点的距离相等,点表示的数是__________.
14.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.
15.观察下列各式:
1×3+1=4=22
2×4+1=9=32
3×5+1=16=42
4×6+1=25=52
……………………
请你把发现的规律用含正整数n的等式表示为___________.
16.如图,△ABC≌△ADE,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC的度数为______.
17.在平行四边形中,,,,那么的取值范围是______.
18.方程的解是 .
三、解答题(共66分)
19.(10分)列方程解应用题:
亮亮服装店销售一种服装,若按原价销售,则每月销售额为10000元;若按八五折销售,则每月多卖出20件,且月销售额还增加1900元.
(1)求每件服装的原价是多少元?
(2)若这种服装的进价每件150元,求按八五折销售的总利润是多少元?
20.(6分)计算
(1)(-3x2y2)2·(2xy)3÷(xy)2 (2)8(x+2)2-(3x-1)(3x+1)
(3) (π﹣3.14)0+|﹣2|﹣. (4)
21.(6分)观察下列各式:
=1+-=;
=1+-=;
=1+-=.
(1)请你根据上面三个等式提供的信息,猜想:
的值;
(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式,并验证;
(3)利用上述规律计算:.
22.(8分)如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y轴交于点B,与l1相交于C(﹣3,3),AO=2BO.
(1)求直线l2:y=kx+b的解析式;
(2)求△ABC的面积.
23.(8分)_______.
24.(8分)如图,在平面直角坐标系中,已知A(4,0)、B(0,3).
(1)求AB的长为____.
(2)在坐标轴上是否存在点P,使△ABP是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.
25.(10分)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:
•﹣=
(1)聪明的你请求出盖住部分化简后的结果
(2)当x=2时,y等于何值时,原分式的值为5
26.(10分)要在某河道建一座水泵站P,分别向河的同一侧甲村A和乙村B送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O为坐标原点,以河道所在的直线为x轴建立直角坐标系(如图),两村的坐标分别为A(1,-2),B(9,-6).
(1)若要求水泵站P距离A村最近,则P的坐标为____________;
(2)若从节约经费考虑,水泵站P建在距离大桥O多远的地方可使所用输水管最短?
(3)若水泵站P建在距离大桥O多远的地方,可使它到甲乙两村的距离相等?
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、D
4、C
5、C
6、B
7、A
8、D
9、C
10、B
二、填空题(每小题3分,共24分)
11、14
12、1
13、
14、2秒或3.5秒
15、(n-1)(n+1)+1=n1.
16、60°
17、218、x=1.
三、解答题(共66分)
19、(1)200元;(2)1400元
20、(1)72x5y5;(2)-x2+32x+33;(3)12-5;(4) .
21、 (1);(2);(3) .
22、(1)y=﹣2x﹣3;(2)S△ABC.
23、
24、(1)5;(2)(0,8),(0,-3),(0,-2),,(9,0),(-1,0),(-4,0),;理由见解析
25、(1)﹣;(2)y=
26、(1)(1,0);(2)P点坐标为(3,0)即水泵站P建在距离大桥O3个单位长度的地方可使所用输水管最短;(3)P点坐标为(7,0)即水泵站P建在距离大桥O7个单位长度的地方可使它到甲乙两村的距离相等
相关试卷
这是一份2023-2024学年四川省资阳市安岳县九年级数学第一学期期末学业水平测试试题含答案,共8页。试卷主要包含了点P,抛物线的对称轴是直线,方程的根是等内容,欢迎下载使用。
这是一份2023-2024学年四川省资阳市安岳县九上数学期末统考模拟试题含答案,共8页。试卷主要包含了抛物线的对称轴是,下列计算正确的是等内容,欢迎下载使用。
这是一份2023-2024学年四川省资阳安岳县联考数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点在等内容,欢迎下载使用。