2019年辽宁省阜新市中考数学真题及答案
展开一、选择题(共30分)
-2的绝对值是( )
A. B. 2C. D.
如图所示的主视图和俯视图对应的几何体(阴影所示为右)是( )
A. B. C. D.
商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:
商场经理最关注这组数据的( )
A. 众数B. 平均数C. 中位数D. 方差
不等式组的解集,在数轴上表示正确的是( )
A. B.
C. D.
一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( )
A. 12B. 10C. 8D. 6
如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y轴上,则△ABC的面积为( )
A. 3
B. 2
C.
D. 1
如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是( )
A.
B.
C.
D.
某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )
A. 160元B. 180元C. 200元D. 220元
如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是( )
如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为( )
A. B.
C. D.
二、填空题(共18分)
函数 QUOTE 的自变量x的取值范围是______.
如图,在△ABC中,CD平分∠ACB,DE∥BC,交AC于点E.若∠AED=50°,则∠D的度数为______.
如图,在Rt△ABC中,∠C=90°,点D是AC边上的一点,DE垂直平分AB,垂足为点E.若AC=8,BC=6,则线段DE的长度为______.
如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE.若AB=2,∠ACB=30°,则线段CD的长度为______.
如图,一艘船以40nmile /h的速度由西向东航行,航行到A处时,测得灯塔P在船的北偏东30°方向上,继续航行2.5h,到达B处,测得灯塔P在船的北偏西60°方向上,此时船到灯塔的距离为______nmile.(结果保留根号)
甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了______h.
三、解答题
(1)计算: QUOTE
(2)先化简,再求值: QUOTE
如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4).
(1)画出与△ABC关于y轴对称的△A1B1C1.
(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.
(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)
为丰富学生的文体生活,育红学校准备成立“声乐、演讲、舞蹈、足球、篮球”五个社团,要求每个学生都参加一个社团且每人只能参加一个社团.为了了解即将参加每个社团的大致人数,学校对部分学生进行了抽样调查在整理调查数据的过程中,绘制出如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)被抽查的学生一共有多少人?
(2)将条形统计图补充完整.
(3)若全校有学生1500人,请你估计全校有意参加“声乐”社团的学生人数.
(4)从被抽查的学生中随意选出1人,该学生恰好选择参加“演讲”社团的概率是多少?
节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.
(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?
(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?
如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.
(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.
①求证:CD=CE,CD⊥CE;
②求证:AD+BD=CD;
(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.
如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.
(1)求这个抛物线的函数表达式.
(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.
(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.
答案和解析
1.【答案】B
2.【答案】B
3.【答案】A
4.【答案】A
5.【答案】D
6.【答案】C
7.【答案】D
8.【答案】C
9.【答案】C
10.【答案】B
11.【答案】x≥2
12.【答案】25°
13.【答案】
14.【答案】2
15.【答案】50
16.【答案】10
17.【答案】解:(1)原式=2-2+4×
=2-2+2
=2;
(2)原式=÷(-)
=•
=,
当m=2时,原式==.
18.【答案】解:(1)如图,△AlB1C1为所作;
(2)如图,△A2BC2为所作;
(3)AB==3,
所以线段AB在旋转过程中扫过的图形面积==π.
19.【答案】解:(1)被抽查的学生数是:15÷15%=100(人);
(2)舞蹈人数有100×20%=20(人),补图如下:
(3)根据题意得:1500×=330(人),
答:估计全校有意参加“声乐”社团的学生人数有330人;
(4)该学生恰好选择参加“演讲”社团的概率是:=.
【解析】(1)用足球的人数除以所占的百分比即可得出被抽查的学生数;
(2)用总人数乘以舞蹈人数所占的百分比求出舞蹈的人数,从而补全统计图;
(3)用全校的总人数乘以参加“声乐”社团的学生人数所占的百分比即可;
(4)用参加“演讲”社团的人数除以总人数即可得出答案.
本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.
20.【答案】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,
可得:,
解得:x=0.3,
经检验x=0.3是原方程的解,
∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;
(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,
设汽车用电行驶ykm,
可得:0.3y+0.8(100-y)≤50,
解得:y≥60,
所以至少需要用电行驶60千米.
21.【答案】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,
∵∠ADB+∠ACB=180°,
∴∠DAC+∠DBC=180°,
∵∠EAC+∠DAC=180°,
∴∠DBC=∠EAC,
∵BD=AE,BC=AC,
∴△BCD≌△ACE(SAS),
∴CD=CE,∠BCD=∠ACE,
∵∠BCD+∠DCA=90°,
∴∠ACE+∠DCA=90°,
∴∠DCE=90°,
∴CD⊥CE;
②∵CD=CE,CD⊥CE,
∴△CDE是等腰直角三角形,
∴DE=CD,
∵DE=AD+AE,AE=BD,
∴DE=AD+BD,
∴AD+BD=CD;
(2)解:AD-BD=CD;
理由:如图2,在AD上截取AE=BD,连接CE,
∵AC=BC,∠ACB=90°,
∴∠BAC=∠ABC=45°,
∵∠ADB=90°,
∴∠CBD=90°-∠BAD-∠ABC=90°-∠BAD-45°=45°-∠BAD,
∵∠CAE=∠BAC-∠BAD=45°-∠BAD,
∴∠CBD=∠CAE,∵BD=AE,BC=AC,
∴△CBD≌△CAE(SAS),
∴CD=CE,∠BCD=∠ACE,
∵∠ACE+∠BCE=∠ACB=90°,
∴∠BCD+∠BCE=90°,
即∠DCE=90°,
∴DE===CD,
∵DE=AD-AE=AD-BD,
∴AD-BD=CD.
22.【答案】解:(1)抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,
即-3a=2,解得:a=-,
故抛物线的表达式为:y=-x2-x+2,
则点C(0,2),函数的对称轴为:x=1;
(2)连接OP,设点P(x,-x2-x+2),
则S=S四边形ADCP=S△APO+S△CPO-S△ODC=×AO×yP+×OC×|xP|-×CO×OD
=(-x2-x+2)×2×(-x)-=-x2-3x+2,
∵-1<0,故S有最大值,当x=-时,S的最大值为;
(3)存在,理由:
△MNO为等腰直角三角形,且∠MNO为直角时,点N的位置如下图所示:
①当点N在x轴上方时,点N的位置为N1、N2,
N1的情况(△M1N1O):
设点N1的坐标为(x,-x2-x+2),则M1E=x+1,
过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,
∵∠FN1O+∠M1N1E=90°,∠M1N1E+∠EM1N1=90°,∴∠EM1N1=∠FN1O,
∠M1N1E=∠N1OF=90°,ON1=M1N1,
∴△M1N1E≌△N1OF(AAS),∴M1E=N1F,
即:x+1=-x2-x+2,解得:x=(舍去负值),
则点N1(,);
N2的情况(△M2N2O):
同理可得:点N2(,);
②当点N在x轴下方时,点N的位置为N3、N4,
同理可得:点N3、N4的坐标分别为:(,)、(,);
综上,点N的坐标为:(,)或(,)或(,)或(,).
尺码/码
36
37
38
39
40
数量/双
15
28
13
9
5
2023年辽宁省阜新市中考数学真题试卷(解析版): 这是一份2023年辽宁省阜新市中考数学真题试卷(解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2018年辽宁省阜新市中考数学真题及答案: 这是一份2018年辽宁省阜新市中考数学真题及答案,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省阜新市中考数学真题: 这是一份2023年辽宁省阜新市中考数学真题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。