|教案下载
终身会员
搜索
    上传资料 赚现金
    高二上学期数学核心专题15.数列放缩与恒成立中的五个视角
    立即下载
    加入资料篮
    高二上学期数学核心专题15.数列放缩与恒成立中的五个视角01
    高二上学期数学核心专题15.数列放缩与恒成立中的五个视角02
    高二上学期数学核心专题15.数列放缩与恒成立中的五个视角03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高二上学期数学核心专题15.数列放缩与恒成立中的五个视角

    展开
    这是一份高二上学期数学核心专题15.数列放缩与恒成立中的五个视角,共6页。

    类型1.利用单调性放缩
    例1.已知数列满足,
    (1)设,证明:是等比数列,并求的通项公式;
    (2)证明:.
    解析:(1)∵,则,即,又∵,所以是首项为,公比为3的等比数列,∴,故的通项公式为.
    (2)由(1)知,即是首项为,公比为的等比数列,
    ∴,又∵数列单调递增,
    ∴,故.
    类型2. 先求和再放缩
    先求和再放松实质上是一类很常见的题目,这类放缩实质在考察数列求和,放缩的结果也很松,下面通过两个例子简单说明即可,分别是利用裂项相消求和与错位相减求和后放缩.
    例2.记为数列的前项和,已知,是公差为的等差数列.
    (1)求得通项公式;
    (2)证明:.
    解析:(1),所以,所以是首项为,公差为的等差数列,
    所以,所以.当时,,所以,即();
    累积法可得:(),又满足该式,所以得通项公式为.
    (2)

    注:,则:.可以看到,裂项后一定可以得到一个估计.
    例3.已知等比数列为递增数列,且.
    (1)求数列的通项公式;
    (2)设,数列的前n项和为,证明:.
    解析:(1)由题意,,解得或,因为等比数列为递增数列,所以,所以.
    由(1)知数列的前n项和为:
    ①,②,两式相减可得:,
    所以,又因为,所以,所以.
    类型3.先放缩通项再求和
    这一类是数列放缩问题的常考类型,相较于类型2而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点. 此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩. 当然,下面的这些常见的裂项公式与放缩公式需要注意.
    1.常见的裂项公式:
    例如:或者等
    2.一个重要的指数恒等式:
    次方差公式
    这样的话,可得:,就放缩出一个等比数列.
    3.糖水不等式:设,则.
    下面来看上面这些基本的放缩结构的应用.
    例4.(2013年广东)
    设数列的前项和为.已知,,.
    (1)求的值;
    (2)求数列的通项公式;
    (3)证明:对一切正整数,有.
    解析:(2)当时,,
    两式相减得
    整理得,即,又
    故数列是首项为,公差为的等差数列,所以,所以
    .
    (3)当时,;当时,;
    当时,,此时
    ,综上,对一切正整数,有
    下面我们再看将通项放缩成等比(等差比数列)再求和完成放缩证明.
    例5.(2014全国2卷)已知数列满足=1,.
    (1)证明是等比数列,并求的通项公式;
    (2)证明:.
    解析:(1)证明:由得,又,所以是首项为,公比为3的等比数列,,因此的通项公式为
    (2)由(1)知,因为当时,,所以
    于是.
    所以.
    注:此处便是利用了重要的恒等式:次方差公式:
    当然,利用糖水不等式亦可放缩:,请读者自行尝试.
    类型4. 基于递推结构的放缩
    1.型:取倒数加配方法.
    例6.(2021浙江卷)已知数列满足.记数列的前n项和为,则( )
    A.B.C.D.
    解析:由
    ,即根据累加法可得,,当且仅当时取等号,.
    一方面:. 另一方面,由累乘法可得,当且仅当时取等号,由裂项求和法得:所以
    ,即.故选:A.
    2.二次递推型:.
    ,然后裂项即可完成放缩,我们以2015浙江卷为例予以说明.
    例7.(2015浙江卷)已知数列满足=且=-()
    (1)证明:1();
    (2)设数列的项和为,证明().
    分析:,累加,则可证得.
    解析:(1)由题意得,即,故.
    由得,由得
    ,即.
    (2)由题意得,所以①,由和得
    所以,因此②
    由①②得:.
    类型5. 数列中的恒成立
    例8.已知数列中,,满足.
    (1)求数列的通项公式;
    (2)设为数列的前项和,若不等式对任意正整数恒成立,求实数的取值范围.
    解析:(1),
    所以是以为首项,公比为的等比数列,
    所以,所以.
    (2) ,
    若对于恒成立,即,
    可得即对于任意正整数恒成立,
    所以,令,则,
    所以,可得,所以,
    所以的取值范围为.
    相关教案

    高二上学期数学核心专题14.数列求和的七大核心考点: 这是一份高二上学期数学核心专题14.数列求和的七大核心考点,共9页。

    高二上学期数学核心专题13.数列求通项的十种常见方法: 这是一份高二上学期数学核心专题13.数列求通项的十种常见方法,共12页。

    高一数学期中备考专题3.二次函数值域及恒成立问题: 这是一份高一数学期中备考专题3.二次函数值域及恒成立问题,共9页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高二上学期数学核心专题15.数列放缩与恒成立中的五个视角
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map