终身会员
搜索
    上传资料 赚现金

    专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)

    立即下载
    加入资料篮
    专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)第1页
    专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)第2页
    专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)第3页
    还剩16页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)

    展开

    这是一份专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共19页。


    定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.
    性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;
    性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
    一、单选题
    1.(2023·吉林长春·统考中考真题)如图,用直尺和圆规作的角平分线,根据作图痕迹,下列结论不一定正确的是( )

    A. B. C. D.
    2.(2022·湖北宜昌·统考中考真题)如图,在中,分别以点和点为圆心,大于长为半径画弧,两弧相交于点,.作直线,交于点,交于点,连接.若,,,则的周长为( )
    A.25 B.22 C.19 D.18
    3.(2022·吉林长春·统考中考真题)如图,在中,根据尺规作图痕迹,下列说法不一定正确的是( )

    A. B.
    C. D.
    4.(2022·湖北黄石·统考中考真题)如图,在中,分别以A,C为圆心,大于长为半径作弧,两弧分别相交于M,N两点,作直线,分别交线段,于点D,E,若,的周长为11,则的周长为( )
    A.13 B.14 C.15 D.16
    5.(2022·贵州黔西·统考中考真题)在中,用尺规作图,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N.作直线交于点D,交于点E,连接.则下列结论不一定正确的是( )
    A. B. C. D.
    6.(2021·江苏淮安·统考中考真题)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是( )

    A.2 B.4 C.6 D.8
    7.(2021·广西梧州·统考中考真题)如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是( )

    A.10.5 B.12 C.15 D.18
    8.(2021·辽宁盘锦·统考中考真题)如图,已知直线AB和AB上的一点C,过点C作直线AB的垂线,步骤如下:
    第一步:以点C为圆心,以任意长为半径作弧,交直线AB于点D和点E;
    第二步:分别以点D和点E为圆心,以为半径作弧,两弧交于点F;
    第三步:作直线CF,直线CF即为所求.
    下列关于的说法正确的是( )
    A.≥ B.≤ C. D.
    9.(2021·海南·统考中考真题)如图,已知,直线与直线分别交于点,分别以点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交直线b于点C,连接,若,则的度数是( )

    A. B. C. D.
    10.(2021·湖南永州·统考中考真题)如图,在中,,分别以点A,B为圆心,大于的长为半径画弧,两弧相交于点M和点N,作直线分别交、于点D和点E,若,则的度数是( )

    A. B. C. D.
    二、填空题
    11.(2022·内蒙古鄂尔多斯·统考中考真题)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是 .

    12.(2022·湖南衡阳·统考中考真题)如图,在中,分别以点和点为圆心,大于的长为半径作圆弧,两弧相交于点和点,作直线交于点,连接.若,,则的周长为 .
    13.(2021·吉林·统考中考真题)如图,已知线段,其垂直平分线的作法如下:①分别以点和点为圆心,长为半径画弧,两弧相交于,两点;②作直线.上述作法中满足的条作为 1.(填“”,“”或“”)

    14.(2021·四川遂宁·统考中考真题)如图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是 .
    15.(2021·湖南邵阳·统考中考真题)如图,已知线段长为4.现按照以下步骤作图:①分别以点,为圆心,大于长为半径画弧,两弧分别相交于点,;②过,两点作直线,与线段相交于点.则的长为 .
    16.(2020·江苏南京·统考中考真题)如图,线段AB、BC的垂直平分线、相交于点,若39°,则= .
    17.(2016·湖南长沙·中考真题)如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为 .
    18.(2018·四川南充·中考真题)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.

    三、解答题
    19.(2022·山东青岛·统考中考真题)已知:,.
    求作:点P,使点P在内部,且.

    20.(2022·广西贵港·中考真题)尺规作图(保留作图痕迹,不要求写出作法):
    如图,已知线段m,n.求作,使.
    21.(2021·山东青岛·统考中考真题)已知:及其一边上的两点,.
    求作:,使,且点在内部,.

    22.(2021·陕西·统考中考真题)如图,已知直线,直线分别与、交于点、.请用尺规作图法,在线段上求作点,使点到、的距离相等.(保留作图痕迹,不写作法)

    (2021·黑龙江绥化·统考中考真题)(1)如图,已知为边上一点,
    (1)请用尺规作图的方法在边上求作一点.使.(保留作图痕迹,不写作法)

    (2)在上图中,如果,则的周长是_______.
    24.(2022·重庆·统考中考真题)在学习矩形的过程中,小明遇到了一个问题:在矩形中,是 边上的一点,试说明的面积与矩形的面积之间的关系.他的思路是:首先过点作的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:
    证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图㾗迹).
    在和中,
    ∵,
    ∴.
    又,
    ∴__________________①
    ∵,
    ∴__________________②
    又__________________③
    ∴.
    同理可得__________________④
    ∴.
    参考答案
    1.B
    【分析】根据作图可得,进而逐项分析判断即可求解.
    解:根据作图可得,故A,C正确;
    ∴在的垂直平分线上,
    ∴,故D选项正确,
    而不一定成立,故B选项错误,
    故选:B.
    【点拨】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.
    2.C
    【分析】由垂直平分线的性质可得BD=CD,由△ABD的周长=AB+AD+BD=AB+AD+CD=AB+AC得到答案.
    解:由作图的过程可知,DE是BC的垂直平分线,
    ∴BD=CD,
    ∵,,
    ∴ △ABD的周长=AB+AD+BD
    =AB+AD+CD
    =AB+AC
    =19.
    故选:C
    【点拨】此题考查了线段垂直平分线的作图、线段垂直平分线的性质、三角形的周长等知识,熟练掌握线段垂直平分线的性质是解题的关键.
    3.B
    【分析】根据尺规作图痕迹,可得DF垂直平分AB,BE是的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.
    解:根据尺规作图痕迹,可得DF垂直平分AB,BE是的角平分线,



    综上,正确的是A、C、D选项,
    故选:B.
    【点拨】本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键.
    4.C
    【分析】根据作法可知MN垂直平分AC,根据中垂线的定义和性质找到相等的边,进而可算出三角形ABC的周长.
    解:由作法得MN垂直平分AC,
    ∴DA=DC,AE=CE=2cm,
    ∵△ABD的周长为11cm,
    ∴AB+BD+AD=11,
    ∴AB+BD+DC=11,即AB+BC=11,
    ∴△ABC的周长=AB+BC+AC=11+2×2=15(cm),
    故选:C.
    【点拨】本题考查线段的中垂线的定义以及性质,三角形的周长,能够熟练运用线段中垂线的性质是解决本题的关键.
    5.A
    【分析】利用线段的垂直平分线的性质判断即可.
    解:由作图可知,垂直平分线段,
    ∴,,,
    故选项B,C,D正确,
    故选:A.
    【点拨】本题考查了线段的垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.
    6.C
    【分析】根据线段的垂直平分线的性质得到EB=EA=4,结合图形计算,得到答案.
    解:∵DE是AB的垂直平分线,AE=4,
    ∴EB=EA=4,
    ∴BC=EB+EC=4+2=6,
    故选:C.
    【点拨】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.
    7.C
    【分析】由垂直平分线的性质可得DC=BD,再计算△ACD周长即可.
    解:∵DE是△ABC的边BC的垂直平分线,
    ∴BD=DC
    ∴AB=AD+BD=AD+DC=9
    ∵AC=6
    ∴△ACD的周长=AD+DC+AC=9+6=15
    故选:C
    【点拨】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    8.C
    【分析】根据过直线外一点作已知直线的垂线的步骤,结合三角形三边关系判断即可.
    解:由作图可知,分别以点和点为圆心,以为半径作弧,两弧交于点,此时,
    故选:.
    【点拨】本题考查作图基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.
    9.C
    【分析】根据题意可得直线是线段AB的垂直平分线,进而可得,利用平行线的性质及等腰三角形中等边对等角,可得,所以可求得.
    解:∵已知分别以点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交直线b于点C,连接,
    ∴直线垂直平分线段AB,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴.
    故选:C.
    【点拨】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线垂直平分线段AB是解题关键.
    10.A
    【分析】由尺规作图痕迹可知,MN是线段AB的垂直平分线,进而得到DB=DA,∠B=∠BAD,再由AB=AC得到∠B=∠C=50°,进而得到∠BAC=80°,∠CAD=∠BAC-∠BAD=30°即可求解.
    解:由题意可知:MN是线段AB的垂直平分线,
    ∴DB=DA,
    ∴∠B=∠BAD=50°,
    又AB=AC,
    ∴∠B=∠C=50°,
    ∴∠BAC=80°,
    ∴∠CAD=∠BAC-∠BAD=30°,
    故选:A.
    【点拨】本题考查等腰三角形的两底角相等,线段垂直平分线的尺规作图等,属于基础题,熟练掌握线段垂直平分线的性质是解决本题的关键.
    11.6
    【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.
    解:∵边BC的垂直平分线DE交AB于点D,
    ∴BD=CD,
    ∵AB=3.7,AC=2.3,
    ∴△ADC的周长为AD+CD+AC=AB+AC=6,
    故答案为:6.
    【点拨】本题考查了线段垂直平分线的性质,熟练掌握这一性质是解题的关键.
    12.23
    【分析】由作图可得:是的垂直平分线,可得再利用三角形的周长公式进行计算即可.
    解:由作图可得:是的垂直平分线,

    ,,

    故答案为:23
    【点拨】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.
    13.>
    【分析】作图方法为:以,为圆心,大于长度画弧交于,两点,由此得出答案.
    解:∵,
    ∴半径长度,
    即.
    故答案为:.
    【点拨】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.
    14.12.
    【分析】根据线段的垂直平分线的性质得到,根据三角形的周长公式计算即可.
    解:∵直线DE垂直平分BC,
    ∴,
    ∴△ABD的周长,
    故答案为:12.
    【点拨】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    15.2
    【分析】根据作图得出是线段的垂直平分线,由线段垂直平分线的性质即可得出结论.
    解:分别以点,为圆心,以大于的长为半径画弧,两弧相交于点和点,
    ,,
    是线段的垂直平分线,

    故答案为2.
    【点拨】本题考查了作图基本作图以及线段垂直平分线的性质,熟知垂直平分线作法是解答此题的关键.
    16.78
    【分析】如图,利用线段垂直平分线的性质结合三角形外角性质得到∠AOC=∠2+∠3=2(∠A+∠C),再利用垂直的定义结合三角形外角性质得到∠AOG =51-∠A,∠COF =51-∠C,利用平角的定义得到∠AOG+∠2+∠3+∠COF+∠1=180,计算即可求解.
    解:如图,连接BO并延长,
    ∵、分别是线段AB、BC的垂直平分线,
    ∴OA=OB,OB=OC,∠ODG=∠OEF=90,
    ∴∠A=∠ABO,∠C=∠CBO,
    ∴∠2=2∠A,∠3=2∠C,∠OGD=∠OFE=90-39=51,
    ∴∠AOC=∠2+∠3=2(∠A+∠C),
    ∵∠OGD=∠A+∠AOG,∠OFE=∠C+∠COF,
    ∴∠AOG =51-∠A,∠COF =51-∠C,
    而∠AOG+∠2+∠3+∠COF+∠1=180,
    ∴51-∠A+2∠A+2∠C+51-∠C+39=180,
    ∴∠A+∠C=39,
    ∴∠AOC=2(∠A+∠C)=78,
    故答案为:78.
    【点拨】本题考查了线段垂直平分线的性质,三角形外角的性质,垂直的定义,平角的定义,注意掌握辅助线的作法,注意掌握整体思想与数形结合思想的应用.
    17.13
    解:DE是AB的垂直平分线,
    所以EA=EB,
    所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,
    故答案为:13.
    18.24
    【分析】根据角平分线和垂直平分线的性质得到角之间的关系,再利用三角形内角和180度求角.
    解:∵DE是AC的垂直平分线,
    ∴EA=EC,
    ∠EAC=∠C,
    ∴∠FAC=∠FAE+∠EAC=19°+∠EAC,
    ∵AF平分∠BAC,
    ∴∠FAB=∠FAC.
    在△ABC中,∠B+∠C+∠BAC=180°所以70°+∠C+2∠FAC=180°,
    ∴70°+∠EAC+2×(19°+∠EAC)=180° ,
    ∴∠C=∠EAC=24°,
    故本题正确答案为24.
    【点拨】本题主要考查角平分线和垂直平分线的性质、三角形内角和等于180度的应用、角的概念及其计算.
    19.见分析
    【分析】分别以点B、C为圆心,大于BC长的一半为半径画弧,交于两点,连接这两点,然后再以点B为圆心,适当长为半径画弧,交AB、BC于点M、N,以点M、N为圆心,大于MN长一半为半径画弧,交于一点Q,连接BQ,进而问题可求解.
    解:如图,点P即为所求:
    【点拨】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.
    20.见分析
    【分析】作直线l及l上一点A;过点A作l的垂线;在l上截取;作;即可得到.
    解:如图所示:为所求.
    注:(1)作直线l及l上一点A;
    (2)过点A作l的垂线;
    (3)在l上截取;
    (4)作.
    【点拨】本题考查作图——复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
    21.见分析
    【分析】先在∠O的内部作∠DAB=∠O,再过B点作AD的垂线,垂足为C点.
    解:如图,Rt△ABC为所作.
    【点拨】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    22.见分析
    【分析】作出线段AB的垂直平分线即可.
    解:如图所示,点即为所求.
    【点拨】本题考查了线段的垂直平分线的性质,解题的关键是熟练掌握基本作图.
    23.(1)见分析;(2)9.
    【分析】(1)直接根据垂直平分线-尺规作图方法作图即可;
    (2)根据(1)中可知,即可求得的周长.
    解:(1)作法:如图所示,
    ①连接(用虚线),
    ②作的垂直平分线交于,
    ③标出点即为所求,
    (2)∵,
    ∴,
    ∴的周长=9.
    【点拨】本题主要考查垂直平分线的做法-尺规作图,熟知垂直平分线的性质是解题的关键.
    24.、、、
    【分析】过点作的垂线,垂足为,分别利用AAS证得,,利用全等三角形的面积相等即可求解.
    解:证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图㾗迹).
    如图所示,
    在和中,
    ∵,
    ∴.
    又,
    ∴①
    ∵,
    ∴②
    又③
    ∴.
    同理可得④
    ∴.
    故答案为:、、、
    【点拨】本题考查了全等三角形的判定和性质,掌握全等三角形的面积相等是解题的关键.

    相关试卷

    专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版):

    这是一份专题2.19 等边三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共26页。

    专题2.14 等腰三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版):

    这是一份专题2.14 等腰三角形的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共22页。

    专题2.9 角的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版):

    这是一份专题2.9 角的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版),共23页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题2.6 线段的轴对称性(直通中考)-2023-2024学年八年级数学上册专题讲与练(苏科版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map