2023-2024学年安徽省中学数学九年级第一学期期末质量检测试题含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.下列计算中正确的是( )
A.B.C.D.
2.如图所示的几何体的主视图为( )
A.B.C.D.
3.若,则等于( )
A.B.C.D.
4.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是( )
A.
B.
C.
D.
5.数据4,3,5,3,6,3,4的众数和中位数是( )
A.3,4B.3,5C.4,3D.4,5
6.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )
A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3
C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3
7.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )
A.B.C.D.
8.已知点(3,﹣4)在反比例函数的图象上,则下列各点也在该反比例函数图象上的是( )
A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)
9.方程的根是( )
A.-1B.0C.-1和2D.1和2
10.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=( )
A.B.C.D.
11.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为( ).
A.B.C.D.
12.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是
二、填空题(每题4分,共24分)
13.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.
14.已知 x1、x2 是关于 x 的方程 x2+4x5=0的两个根,则x1 x2=_____.
15. “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
16.二次函数的图象经过点(4,﹣3),且当x=3时,有最大值﹣1,则该二次函数解析式为_____.
17.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应点的坐标为____.
18.已知三个边长分别为2,3,5的正方形如图排列,则图中阴影部分的面积为_____.
三、解答题(共78分)
19.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
20.(8分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF
(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.
(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.
21.(8分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.
(1)当时,求的度数;
(2)求证:;
(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.
22.(10分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.
(1)求∠BAD的度数;
(2)若AD=,求DB的长.
23.(10分)已知二次函数图象的顶点在原点,对称轴为轴.直线的图象与二次函数的图象交于点和点(点在点的左侧)
(1)求的值及直线解析式;
(2)若过点的直线平行于直线且直线与二次函数图象只有一个交点,求交点的坐标.
24.(10分)超速行驶被称为“马路第一杀手”为了让驾驶员自觉遵守交通规则,湖浔大道公路检测中心在一事故多发地段安装了一个测速仪器,如图所示,已知检测点设在距离公路10米的A处,测得一辆汽车从B处行驶到C处所用时间为1.35秒.已知∠B=45°,∠C=30°.
(1)求B,C之间的距离(结果保留根号);
(2)如果此地限速为70km/h,那么这辆汽车是否超速?请说明理由.(参考数据;≈1.7,≈1.4)
25.(12分)根据广州市垃圾分类标准,将垃圾分为“厨余垃圾、可回收垃圾、有害垃圾、其它垃圾”四类.小明将分好类的两袋垃圾准确地投递到小区的分类垃圾桶里.请用列举法求小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率.
26.在一个不透明的盒子里,装有四个分别标有数字2、3、4、6的乒乓球,它们的形状、大小、颜色、质地完全相同,耀华同学先从盒子里随机取出一个小球,记为数字x,不放回,再由洁玲同学随机取出另一个小球,记为数字y,
(1)用树状图或列表法表示出坐标(x,y)的所有可能出现的结果;
(2)求取出的坐标(x,y)对应的点落在反比例函数y=图象上的概率.
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】直接利用二次根式混合运算法则分别判断得出答案.
【详解】A、无法计算,故此选项不合题意;
B、,故此选项不合题意;
C、,故此选项不合题意;
D、,正确.
故选D.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
2、B
【分析】根据三视图的定义判断即可.
【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.
故选B.
本题考查了三视图知识.
3、B
【分析】首先根据已知等式得出,然后代入所求式子,即可得解.
【详解】∵
∴
∴
故答案为B.
此题主要考查利用已知代数式化为含有同一未知数的式子,即可解题.
4、C
【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.
故选C.
点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.
5、A
【分析】根据众数和中位数的定义解答即可.
【详解】解:在这组数据中出现次数最多的是3,即众数是3;
把这组数据按照从小到大的顺序排列3,3,3,4,4,5,6,
∴中位数为4;
故选:A.
本题考查一组数据的中位数和众数,一组数据中出现次数最多的数据叫做众数;在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
6、D
【详解】因为y=x2-4x-4=(x-2)2-8,
以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),
所以平移后的抛物线的函数表达式为y=(x+1)2-1.
故选D.
7、C
【解析】试题解析:这五种图形中,平行四边形、菱形和正六边形是中心对称图形,
所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=.
故选C.
考点:1.概率公式;2.中心对称图形.
8、C
【解析】试题解析:∵反比例函数图象过点(3,-4),
即k=−12,
A. ∴此点不在反比例函数的图象上,故本选项错误;
B.∴此点不在反比例函数的图象上,故本选项错误;
C. ∴此点在反比例函数的图象上,故本选项正确.
D.∴此点不在反比例函数的图象上,故本选项错误;
故选C.
9、C
【分析】用因式分解法课求得
【详解】解: ,,解得
故选C
本题考查了用因式分解求一元二次方程.
10、B
【解析】设AB=x,求出BC=x,CD=AC=x,求出BD为(x+x),通过∠ACB=45°,CD=AC,可以知道∠D即为22.5°,再解直角三角形求出tanD即可.
【详解】解:设AB=x,
∵在Rt△ABC中,∠B=90°,∠ACB=45°,
∴∠BAC=∠ACB=45°,
∴AB=BC=x,
由勾股定理得:AC==x,
∴AC=CD=x
∴BD=BC+CD=x+x,
∴tan22.5°=tanD==
故选B.
本题考查了解直角三角形、勾股定理、等腰三角形的性质和判定等知识点,设出AB=x能求出BD= x+x是解此题的关键.
11、B
【分析】取AB的中点M,连接CM,EM,当CE=CM+EM时,CE的值最大,根据旋转的性质得到AC′=AC=2,由三角形的中位线的性质得到EMAC′=2,根据勾股定理得到AB=2,即可得到结论.
【详解】取AB的中点M,连接CM,EM,∴当CE=CM+EM时,CE的值最大.
∵将直角边AC绕A点逆时针旋转至AC′,∴AC′=AC=2.
∵E为BC′的中点,∴EMAC′=2.
∵∠ACB=90°,AC=BC=2,∴AB=2,∴CMAB,∴CE=CM+EM.
故选B.
本题考查了旋转的性质,直角三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.
12、C
【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
故选C
考点:1、方差;2、平均数;3、中位数;4、众数
二、填空题(每题4分,共24分)
13、
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】解:将55000000用科学记数法表示为:5.5×1,
故答案为:5.5×1.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14、-1
【分析】根据根与系数的关系即可求解.
【详解】∵x1、x2 是关于 x 的方程 x2+1x5=0的两个根,
∴x1 x2=-=-1,
故答案为:-1.
此题主要考查根与系数的关系,解题的关键是熟知x1 x2=-.
15、57.5
【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.
【详解】如图,AE与BC交于点F,
由BC //ED 得△ABF∽△ADE,
∴AB:AD=BF:DE,即5:AD=0.4:5,
解得:AD=62.5(尺),
则BD=AD-AB=62.5-5=57.5(尺)
故答案为57.5.
本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.
16、y=﹣2(x﹣3)2﹣1
【分析】根据题意设出函数的顶点式,代入点(4,﹣3),根据待定系数法即可求得.
【详解】∵当x=3时,有最大值﹣1,
∴设二次函数的解析式为y=a(x﹣3)2﹣1,
把点(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,
解得a=﹣2,
∴y=﹣2(x﹣3)2﹣1.
故答案为:y=﹣2(x﹣3)2﹣1.
本题考查了待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.
17、 (1,)或(-1,-)
【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.本题中k=1或−1.
【详解】解:∵两个图形的位似比是1:(−)或1:,AC的中点是(4,3),
∴对应点是(1,)或(−1,−).
本题主要考查位似变换中对应点的坐标的变化规律.
18、.
【解析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.
【详解】解:如图,
对角线所分得的三个三角形相似,
根据相似的性质可知,
解得,
即阴影梯形的上底就是().
再根据相似的性质可知,
解得:,
所以梯形的下底就是,
所以阴影梯形的面积是.
故答案为:.
本题考查的是相似三角形的性质,相似三角形的对应边成比例.
三、解答题(共78分)
19、10,1.
【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程 求出边长的值.
试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得 化简,得,解得:
当时,(舍去),
当时,,
答:所围矩形猪舍的长为10m、宽为1m.
考点:一元二次方程的应用题.
20、(1)见解析;(2)结论仍然成立.,DE=DF,见解析;(3)仍然成立,DE=DF,见解析
【分析】(1)由题意根据全等三角形的性质与判定,结合等边三角形性质证明△BED≌△CFD(ASA),即可证得DE=DF;
(2)根据题意先取AC中点G,连接DG,继而再全等三角形的性质与判定,结合等边三角形性质证明△EDG≌△FDC(ASA),进而证得DE=DF;
(3)由题意过点D作DN⊥AC于N,DM⊥AB于M, 继而再全等三角形的性质与判定,结合等边三角形性质证明△DME≌△DNF(ASA),即可证得DE=DF.
【详解】解:(1)∵AB=AC,∠A=60°,
∴△ABC是等边三角形,即∠B=∠C=60°,
∵D是BC的中点,
∴BD=CD,
∵∠EDF=120°,DF⊥AC,
∴∠FDC=30°,
∴∠EDB=30°,
∴△BED≌△CFD(ASA),
∴DE=DF.
(2)取AC中点G,连接DG,如下图,
∵D为BC的中点,
∴DG=AC=BD=CD,
∴△BDG是等边三角形,
∴∠GDE+∠EDB=60°,
∵∠EDF=120°,
∴∠FDC+∠EDB=60°,
∴∠EDG=∠FDC,
∴△EDG≌△FDC(ASA),
∴DE=DF,
∴结论仍然成立.
(3)如下图,过点D作DN⊥AC于N,DM⊥AB于M,
∴∠DME=∠DNF=90°,
由(1)可知∠B=∠C=60°,
∴∠NDC=∠BDM=30°,DM=DN,
∴∠MDN=120°,即∠NDF=∠MDE,
∴△DME≌△DNF(ASA),
∴DE=DF,
∴仍然成立.
本题是几何变换综合题,主要考查全等三角形的判断和性质以及等边三角形的性质,根据题意构造出全等三角形是解本题的关键.
21、(1)75°;(2)证明见解析;(3)或或.
【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数;
(2)连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB,再根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出△ABC∽△PBA,得出答案即可;
(3)记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值.
【详解】解:(1)∵MN⊥AB,AM=BM,
∴PA=PB,
∴∠PAB=∠B,
∵∠APB=30°,
∴∠B=75°,
(2)如图1,连接MD,
∵MD为△PAB的中位线,
∴MD∥AP,
∴∠MDB=∠APB,
∵∠BAC=∠MDC=∠APB,
又∵∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,
∴∠BAP=∠ACB,
∵∠BAP=∠B,
∴∠ACB=∠B,
∴AC=AB,由(1)可知PA=PB,
∴△ABC∽△PBA,
∴ ,
∴AB2=BC•PB;
(3)如图2,记MP与圆的另一个交点为R,
∵MD是Rt△MBP的中线,
∴DM=DP,
∴∠DPM=∠DMP=∠RCD,
∴RC=RP,
∵∠ACR=∠AMR=90°,
∴AM2+MR2=AR2=AC2+CR2,
∴12+MR2=22+PR2,
∴12+(4-PR)2=22+PR2,
∴PR=,
∴MR=,
(一)当∠ACQ=90°时,AQ为圆的直径,
∴Q与R重合,
∴MQ=MR=;
(二)如图3,当∠QCD=90°时,
在Rt△QCP中,PQ=2PR=,
∴MQ=;
(三)如图4,当∠QDC=90°时,
∵BM=1,MP=4,
∴BP=,
∴DP=BP=,
∵cs∠MPB= ,
∴PQ=,
∴MQ=;
(四)如图5,当∠AEQ=90°时,
由对称性可得∠AEQ=∠BDQ=90°,
∴MQ=;
综上所述,MQ的值为或或.
此题主要考查了圆的综合题、等腰三角形的性质、三角形中位线定理,勾股定理,圆周角定理的综合应用,解决问题的关键是作辅助线构造直角三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.
22、(1)60°;(2)3
【分析】(1)根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后利用互余可计算出∠BAD的度数;
(2)利用含30度的直角三角形三边的关系求解.
【详解】解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠B=∠ACD=30°,
∴∠BAD=90°﹣∠B=90°﹣30°=60°;
(2)在Rt△ADB中,.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
23、(1)m=,;(2)
【分析】(1)由于抛物线的顶点为原点,因此可设其解析式为y=ax2,直接将A点,B点的坐标代入抛物线中即可求出抛物线的解析式以及m的值,进而可知出点B的坐标,再将A,B点的坐标代入一次函数中,即可求出一次函数的解析式.
(2)根据题意可知直线l2的解析式,由抛物线与l2只有一个交点,联立直线与二次函数的解析式,消去y,得出一个含x一元二次方程,根据方程的判别式为0可求得n的值,进而得出结果.
【详解】(1)解:假设二次函数的解析式为,
将分别代入二次函数的解析式,
得:,解得.
解得:.
将代入中,
得,,解得:.
的解析式为.
(2)由题意可知:l2∥l1,
可设直线的解析式为:
过点,则有:.
.
由题意,联立直线与二次函数的解析式,可得以下方程组:
,
消元,得:,
整理,得:, ①
由题意,得与只有一个交点,
可得:,
解得:.
将代回方程①中,得.
将代入中,
得.
可得交点坐标为.
此题主要考查了求二次函数解析式,求一次函数解析式,以及两函数的交点问题,解决问题的关键是联立方程组求解.
24、(1)BC=(10+10)m;(2)这辆汽车超速.理由见解析.
【分析】(1)作AD⊥BC于D,则AD=10m,求出CD、BD即可解决问题;
(2)求出汽车的速度,即可解决问题,注意统一单位.
【详解】(1)如图作AD⊥BC于D,
则AD=10m,
在Rt△ABD中,∵∠B=45°,
∴BD=AD=10m,
在Rt△ACD中,∵∠C=30°,
∴tan30°=,
∴CD=AD=10m,
∴BC=BD+DC=(10+10)m;
(2)结论:这辆汽车超速.
理由:∵BC=10+10≈27m,
∴汽车速度==20m/s=72km/h,
∵72km/h>70km/h,
∴这辆汽车超速.
本题考查解直角三角形的应用,锐角三角函数、速度、时间、路程之间的关系等知识, 解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
25、见解析,
【分析】首先利用树状图法列举出所有可能,进而利用概率公式求出答案.
【详解】解:分别记厨余垃圾、可回收垃圾、有害垃圾、其它垃圾为A、B、C、D,
画树状图如下:
由树状图知,共有12种等可能结果,其中小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的结果有2种,
所以小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率为=.
本题主要考查的是利用树状图求解概率,解此题需要正确的运用树状图,所以掌握树状图是解此题的关键.
26、(1)见解析;(2)
【分析】(1)首先根据题意列出表格,然后由表格求得所有等可能的结果;
(2)由(1)中的列表求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案.
【详解】(1)列表如下
则共有12种可能的结果;
(2)各取一个小球所确定的点(x,y)落在反比例函数y=的图象上的有(6,2),(4,3),
(3,4),(2,6)四种情况,
∴点(x,y)落在反比例函数y=的图象上的概率为=.
本题考查了列表法或树状图法求概率,反比例函数图象上点的坐标特征.用到的知识点为:概率=所求情况数与总情况数之比.
2
3
4
6
2
(3,2)
(4,2)
(6,2)
3
(2,3)
(4,3)
(6,4)
4
(2,4)
(3,4)
(6,4)
6
(2,6)
(3,6)
(4,6)
2023-2024学年安徽省宣城市中学数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年安徽省宣城市中学数学九年级第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,中,,,,则的长为,若,则的值为,点P1等内容,欢迎下载使用。
2023-2024学年安徽省蒙城中学数学九年级第一学期期末质量检测试题含答案: 这是一份2023-2024学年安徽省蒙城中学数学九年级第一学期期末质量检测试题含答案,共7页。试卷主要包含了下列方程中,没有实数根的是等内容,欢迎下载使用。
2023-2024学年安徽省阜阳市郁文中学数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年安徽省阜阳市郁文中学数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了如图,在▱ABCD中,AB,点A所在的象限是等内容,欢迎下载使用。