- 第01讲 函数及其性质(单调性、奇偶性、周期性、对称性,9类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 3 次下载
- 第04讲 利用导数证明不等式(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 1 次下载
- 第07讲 利用导数研究函数的零点问题(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 1 次下载
- 第08讲 利用导数研究方程的根(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 1 次下载
- 第10讲 构造函数及不等式放缩判断函数值大小关系及其他综合问题(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考) 试卷 1 次下载
专题02 常用逻辑用语(6类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)
展开(核心考点精讲精练)
1. 4年真题考点分布
2. 命题规律及备考策略
【命题规律】本节内容是新高考卷的选考内容,具体视命题情况而定,常作为知识点载体的形式考查,例如2023年新Ⅰ卷第7题以数列知识点作为载体,难度随载体知识点而定,分值为5分
【备考策略】1.理解、掌握充分条件、必要条件、充要条件
2.能正确从集合角度理解充分条件与必要条件的判断及逻辑关系
3.能理解全称量词与存在量词的意义
4.能正确对全称量词命题和存在量词命题进行否定
【命题预测】本节内容常作为载体考查充分条件与必要条件,需对考纲内知识点熟练掌握;全称量词命题和存在量词命题的否定也是高考复习和考查的重点。
一、充分条件、必要条件、充要条件
1.定义
如果命题“若,则”为真(记作),则是的充分条件;同时是的必要条件.
2.从逻辑推理关系上看
(1)若且,则是的充分不必要条件;
(2)若且,则是的必要不充分条件;
(3)若且,则是的的充要条件(也说和等价);
(4)若且,则不是的充分条件,也不是的必要条件.
对充分和必要条件的理解和判断,要搞清楚其定义的实质:,则是的充分条件,同时是的必要条件.所谓“充分”是指只要成立,就成立;所谓“必要”是指要使得成立,必须要成立(即如果不成立,则肯定不成立).
二.全称量词与存在童词
(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对中的任意一个,有成立”可用符号简记为“”,读作“对任意属于,有成立”.
(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在中的一个,使成立”可用符号简记为“”,读作“存在中元素,使成立”(存在量词命题也叫存在性命题).
三.含有一个量词的命题的否定
(1)全称量词命题的否定为,.
(2)存在量词命题的否定为.
注:全称、存在量词命题的否定是高考常见考点之一.
【方法技巧与总结】
1.从集合与集合之间的关系上看
设.
(1)若,则是的充分条件(),是的必要条件;若,则是的充分不必要条件,是的必要不充分条件,即且;
注:关于数集间的充分必要条件满足:“小大”.
(2)若,则是的必要条件,是的充分条件;
(3)若,则与互为充要条件.
2.常见的一些词语和它的否定词如下表
(1)要判定一个全称量词命题是真命题,必须对限定集合中的每一个元素证明其成立,要判断全称量词命题为假命题,只要能举出集合中的一个,使得其不成立即可,这就是通常所说的举一个反例.
(2)要判断一个存在量词命题为真命题,只要在限定集合中能找到一个使之成立即可,否则这个存在量词命题就是假命题.
【题型归纳目录】
题型一:充分条件与必要条件的判断
题型二:根据充分必要条件求参数的取值范围
题型三:全称量词命题与存在量词命题的真假
题型四:全称量词命题与存在量词命题的否定
题型五:根据命题的真假求参数的取值范围
【典例例题】
题型一:充分条件与必要条件的判断
例1.“”是“”的( )
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
例2.在等比数列中,已知,则“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
例3.已知m,n是两条不重合的直线,是一个平面,,则“”是“”的( )
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
(多选题)例4.已知a,,则使“”成立的一个必要不充分条件是( )
A.B.C.D.
题型二:根据充分必要条件求参数的取值范围
例5.设;,若p是q的充分不必要条件,则( )
A. B. C. D.
例6.已知集合,.若“”是“”的充分条件,则实数的取值范围为________.
题型三:全称量词命题与存在量词命题的真假
例7.(2022·浙江·高三专题练习)下列命题中,真命题为( )
A.存在,使得
B.直线,平面,平面,则平面
C.最小值为4
D.,是成立的充分不必要条件
(多选题)例8.(2022·全国·高三专题练习)下列命题中的真命题是( )
A.∀x∈R,2x-1>0B.∀x∈N*,(x-1)2>0
C.∃x∈R,lgx<1D.∃x∈R,tanx=2
例9.(2022·全国·高三专题练习)下列命题中正确的是_____(写出正确命题的序号)
(1),使,只需;
(2),恒成立,只需;
(3),,成立,只需;
(4),,,只需.
例10.下列命题中,真命题是( )
A.,
B.,
C.“”是“”的必要不充分条件
D.命题“,”的否定为“,”
题型四:全称量词命题与存在量词命题的否定
例11.命题“,”的否定是( ).
A.,B.,
C.,D.,
例12.十七世纪,数学家费马提出猜想:“对任意正整数,关于x,y,z的方程没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )
A.对任意正整数n,关于x,y,z的方程都没有正整数解
B.对任意正整数,关于x,y,z的方程至少存在一组正整数解
C.存在正整数,关于x,y,z的方程至少存在一组正整数解
D.存在正整数,关于x,y,z的方程至少存在一组正整数解
例13.已知命题p:,,则命题p的否定为( )
A.,B.,
C.,D.,
例14.已知命题或,则命题的否定为( )
A.或
B.且
C.且
D.且
题型五:根据命题的真假求参数的取值范围
例15.若命题“时,”是假命题,则的取值范围( )
A.B.
C.D.
例16.若命题“”为假命题,则实数x的取值范围为( )
A.B.C.D.
例17.已知定义在上的函数满足且,其中的解集为A.函数,,若,使得,则实数a的取值范围是___________.
例18.已知直线与圆,则“”是“直线与圆相交”的( )
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
4年考情
考题示例
考点分析
关联考点
2023年新I卷,第7题,5分
充分条件与必要条件
等差数列通项公式及前n项和
原词语
等于
大于
小于
是
都是
任意
(所有)
至多
有一个
至多
有一个
否定词语
不等于
小于等于
大于等于
不是
不都是
某个
至少有
两个
一个都
没有
专题10.1 统计(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题10.1 统计(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题101统计原卷版docx、专题101统计解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.3 椭圆(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题93椭圆原卷版docx、专题93椭圆解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
专题1.1 集合(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题1.1 集合(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题11集合原卷版docx、专题11集合解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。