第18讲 圆锥曲线中的极点极线问题(高阶拓展、竞赛适用)(1类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考)
展开2. 命题规律及备考策略
【命题规律】本节内容是新高考卷的选考内容,设题不定,难度中等或偏难,分值为5-12分
【备考策略】1.理解、掌握圆锥曲线极点极线的定义
2.理解、掌握圆锥曲线的极点极线问题及其相关计算
【命题预测】本节内容是新高考卷的常考内容,小题和大题都会作为载体命题,同学们要会结合公式运算,需强化训练复习
知识讲解
极点极线的定义
如图,
设 P 是不在圆雉曲线上的一点, 过 P 点引两条割线依次交圆锥曲线于四点 E,F,G,H, 连接 EH,FG 交于 N, 连接 EG,FH交于 M, 则直线 MN 为点 P 对应的极线. 若 P 为圆雉曲线上的点, 则过 P 点的切线即为极线.
同理, PM 为点 N 对应的极线, PN 为点 M 所对应的极线. 因而将 △MNP 称为自极三点形. 设直线 MN 交圆锥曲线于点 A,B 两点, 则 PA, PB 恰为圆锥曲线的两条切线.
其他定义
对于圆锥曲线 C:Ax2+Bxy+Cy2+Dx+Ey+F=0, 已知点 Px0,y0 (非中心) 及直线
l:Ax0x+ B⋅x0y+y0x2+Cy0y+D⋅x+x02+E⋅y0+y2+F=0, 则称点 Px0,y0 是直线 l 关于圆锥曲线 C 的极点, 直线 l称为点 P 关于圆锥曲线 C 的极线。
配极原则: 共线点的极线必共点, 共点线的极点必共点。
替换原则
x0x→x2,x0y+y0x2→xy,y0y→y2,x+x02→x,y+y02→y.
极点极线的几何意义 (以椭圆为例)
已知椭圆方程: x2a2+y2b2=1, 设点 Px0,y0 的极线 l:x0xa2+y0yb2=1.
(1) 当点 Px0,y0 在椭圆上时, 极线 l 是以点 P 为切点的切线。(极点在极线上)
(2) 当点 P 在椭圆外时, 极线 l 与椭圆相交, 且为由 P 点向椭圆所引切线的切点弦所在直线。
(3) 当点 P 在椭圆内时, 极线 l 与椭圆相离, 极线 l 为经过点 P 的弦在两端点处的切线交点的轨迹, 且极线 l 与以点 P 为中点的弦所在的直线平行。
特别地:
(1) 对于椭圆 x2a2+y2b2=1, 与点 Px0,y0 对应的极线方程为 x0xa2+y0yb2=1;
(2) 对于双曲线 x2a2−y2b2=1, 与点 Px0,y0 对应的极线方程为 x0xa2−y0yb2=1;
(3) 对于抛物线 y2=2px, 与点 Px0,y0 对应的极线方程为 y0y=px0+x
考点一、极点极线在圆锥曲线中的应用
1.(2023·全国·高三专题练习)阅读材料:
(一)极点与极线的代数定义;已知圆锥曲线G:,则称点P(,)和直线l:是圆锥曲线G的一对极点和极线.事实上,在圆锥曲线方程中,以替换,以替换x(另一变量y也是如此),即可得到点P(,)对应的极线方程.特别地,对于椭圆,与点P(,)对应的极线方程为;对于双曲线,与点P(,)对应的极线方程为;对于抛物线,与点P(,)对应的极线方程为.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.
(二)极点与极线的基本性质、定理
①当P在圆锥曲线G上时,其极线l是曲线G在点P处的切线;
②当P在G外时,其极线l是曲线G从点P所引两条切线的切点所确定的直线(即切点弦所在直线);
③当P在G内时,其极线l是曲线G过点P的割线两端点处的切线交点的轨迹.
结合阅读材料回答下面的问题:
(1)已知椭圆C:经过点P(4,0),离心率是,求椭圆C的方程并写出与点P对应的极线方程;
(2)已知Q是直线l:上的一个动点,过点Q向(1)中椭圆C引两条切线,切点分别为M,N,是否存在定点T恒在直线MN上,若存在,当时,求直线MN的方程;若不存在,请说明理由.
2.(2022·全国·统考高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
3.(北京·高考真题)已知椭圆:的离心率为,点和点
都在椭圆上,直线交轴于点.
(Ⅰ)求椭圆的方程,并求点的坐标(用,表示);
(Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得
?若存在,求点的坐标;若不存在,说明理由.
4.(全国·高考真题)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
5.(全国·统考高考真题)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
1.(2022·全国·高三专题练习)已知椭圆C: =1(a>b>0)经过点A,其长半轴长为2.
(1)求椭圆C的方程;
(2)设经过点B(-1,0)的直线l与椭圆C相交于D,E两点,点E关于x轴的对称点为F,直线DF与x轴相交于点G,记△BEG与△BDG的面积分别为S1,S2,求的最大值.
2.(2023秋·浙江衢州·高二浙江省龙游中学校联考期末)已知椭圆:的长轴长为4,离心率为,其左、右顶点分别为A、B,右焦点为F.
(1)求椭圆的方程;
(2)如图,过右焦点F作不与x轴重合的直线交椭圆于C、D两点,直线AD和BC相交于点M,求证:点M在定直线上;
(3)若直线AC与(2)中的定直线相交于点N,在x轴上是否存在点P,使得.若存在,求出点P坐标;若不存在,请说明理由.
3.(2023·全国·高三专题练习)已知椭圆的离心率为,且过点,A,B分别为椭圆E的左,右顶点,P为直线上的动点(不在x轴上),与椭圆E的另一交点为C,与椭圆E的另一交点为D,记直线与的斜率分别为,.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求的值;
(Ⅲ)证明:直线过一个定点,并求出此定点的坐标.
4.(2023·全国·高三专题练习)已知椭圆的左焦点为,且过点.
(1)求椭圆的标准方程;
(2)已知分别为椭圆的左、右顶点,为直线上任意一点,直线分别交椭圆于不同的两点.求证:直线恒过定点,并求出定点坐标.
5.(2023·全国·高三专题练习)椭圆有两个顶点过其焦点的直线与椭圆交于两点,并与轴交于点,直线与交于点.
(1)当时,求直线的方程;
(2)当点异于两点时,证明:为定值.
【能力提升】
1.(2023·全国·高三专题练习)椭圆方程,平面上有一点.定义直线方程是椭圆在点处的极线.已知椭圆方程.
(1)若在椭圆上,求椭圆在点处的极线方程;
(2)若在椭圆上,证明:椭圆在点处的极线就是过点的切线;
(3)若过点分别作椭圆的两条切线和一条割线,切点为,,割线交椭圆于,两点,过点,分别作椭圆的两条切线,且相交于点.证明:,,三点共线.
2.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆,与点对应的极线方程为,我们还知道如果点在圆上,极线方程即为切线方程;如果点在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆,与点对应的极线方程为.如上图,已知椭圆C:,,过点P作椭圆C的两条切线PA,PB,切点分别为A,B,则直线AB的方程为 ;直线AB与OP交于点M,则的最小值是 .
3.(2023·全国·高三练习)已知双曲线:(,)实轴端点分别为,,右焦点为,离心率为2,过点且斜率1的直线与双曲线交于另一点,已知的面积为.
(1)求双曲线的方程;
(2)若过的直线与双曲线交于,两点,试探究直线与直线的交点是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.
4.(2023·全国·高三专题练习)已知、分别为椭圆:的上、下焦点,其中也是抛物线的焦点,点是与在第二象限的交点,且.
(1)求椭圆的方程;
(2)已知点和圆:,过点的动直线与圆相交于不同的两点,在线段上取一点,满足:,,(且).求证:点总在某定直线上.
5.(2022秋·福建泉州·高三统考期末)曲线的左、右焦点分别为,左、右顶点分别为,C上的点M(不在x轴上)满足,且直线的斜率之积等于.
(1)求C的方程;
(2)过点的直线l交C于A,B两点,若,其中,证明:.
6.(2023秋·北京·高三中关村中学校考开学考试)已知椭圆M:(a>b>0)过A(-2,0),B(0,1)两点.
(1)求椭圆M的离心率;
(2)设椭圆M的右顶点为C,点P在椭圆M上(P不与椭圆M的顶点重合),直线AB与直线CP交于点Q,直线BP交x轴于点S,求证:直线SQ过定点.
7.(2023·全国·高三专题练习)在平面直角坐标系中,如图,已知的左、右顶点为、,右焦点为,设过点的直线、与椭圆分别交于点、,其中,,.
(1)设动点满足,求点的轨迹;
(2)设,,求点的坐标;
(3)设,求证:直线必过轴上的一定点(其坐标与无关).
8.(2023春·广东广州·高三统考阶段练习)已知双曲线的中心在原点且一个焦点为,直线与其相交于A,B两点,若AB中点的横坐标为.
(1)求双曲线的方程;
(2)设,为双曲线实轴的两个端点,若过F的直线l与双曲线C交于M,N两点,试探究直线与直线的交点Q是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.
9.(2023春·上海·高三期末)已知椭圆:()的离心率为,上、下顶点分别为,,直线经过点且与椭圆交于,两点,当时,四边形的面积为.
(1)求椭圆的标准方程.
(2)若直线,交于点,试判断点是否在定直线上,若是,求出该直线方程;若不是,请说明理由.
10.(2023春·湖北武汉·高三校考)在平面直角坐标系xOy中,已知点,,设的内切圆与AC相切于点D,且,记动点C的轨迹为曲线T.
(1)求T的方程;
(2)设过点的直线l与T交于M,N两点,已知动点P满足,且,若,且动点Q在T上,求的最小值.
【真题感知】
1.(2021·全国·统考高考真题)(多选)已知直线与圆,点,则下列说法正确的是( )
A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切
2.(北京·高考真题)已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
3.(四川·高考真题)椭圆有两顶点A(﹣1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
(Ⅰ)当|CD|=时,求直线l的方程;
(Ⅱ)当点P异于A、B两点时,求证:为定值.
4.(北京·高考真题)已知椭圆的右焦点为,且经过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
5.(全国·高考真题)在直角坐标系中,曲线C:y=与直线交与M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
6.(北京·高考真题)已知椭圆的离心率为,焦距为.斜率为的直线与椭圆有两个不同的交点、.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,求的最大值;
(Ⅲ)设,直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.若、和点 共线,求.
7.(北京·统考高考真题)已知椭圆过点,且.
(Ⅰ)求椭圆C的方程:
(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.
8.(四川·高考真题)如图,椭圆E:的离心率是,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行于轴时,直线被椭圆E截得的线段长为.
(1)求椭圆E的方程;
(2)在平面直角坐标系中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
9.(江西·高考真题)如图,椭圆经过点P(1,),离心率e=,直线l的方程为x=4.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为.问:是否存在常数λ,使得 ?若存在,求λ的值;若不存在,说明理由.
第19讲 圆锥曲线中的光学性质(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考): 这是一份第19讲 圆锥曲线中的光学性质(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共2页。试卷主要包含了 命题规律及备考策略, 双曲线的光学性质等内容,欢迎下载使用。
第16讲 圆锥曲线中的切线方程与切点弦方程(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考): 这是一份第16讲 圆锥曲线中的切线方程与切点弦方程(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共2页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略等内容,欢迎下载使用。
第11讲 圆锥曲线中的中点弦问题(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考): 这是一份第11讲 圆锥曲线中的中点弦问题(高阶拓展、竞赛适用)(3类核心考点精讲精练)-备战2024年高考数学一轮复习(新教材新高考),共4页。试卷主要包含了 4年真题考点分布, 命题规律及备考策略, 抛物线的中点弦斜率公式, 中点弦斜率拓展, 椭圆其他斜率形式拓展等内容,欢迎下载使用。