2024年数学高考大一轮复习第三章 §3.1 导数的概念及其意义、导数的运算
展开1.(2023·广州模拟)曲线y=x3+1在点(-1,a)处的切线方程为( )
A.y=3x+3 B.y=3x+1
C.y=-3x-1 D.y=-3x-3
2.记函数f(x)的导函数为f′(x).若f(x)=exsin 2x,则f′(0)等于( )
A.2 B.1 C.0 D.-1
3.(2022·广西三市联考)设函数f(x)在R上存在导函数f′(x),f(x)的图象在点M(1,f(1))处的切线方程为y=x+2,那么f(1)+f′(1)等于( )
A.1 B.2 C.3 D.4
4.已知函数f(x)=xln x,若直线l过点(0,-e),且与曲线y=f(x)相切,则直线l的斜率为( )
A.-2 B.2 C.-e D.e
5.已知函数f(x)=aln x,g(x)=bex,若直线y=kx(k>0)与函数f(x),g(x)的图象都相切,则a+的最小值为( )
A.2 B.2e C.e2 D.
6.已知曲线C:f(x)=x3-ax+a,若过曲线C外一点A(1,0)引曲线C的两条切线,它们的倾斜角互补,则a的值为( )
A. B.-2 C.2 D.-
7.写出一个同时具有性质:①f(x1x2)=f(x1)+f(x2),②当x∈(0,+∞)时,f′(x)>0的函数f(x)=________.
8.已知函数f(x)=x(x-1)(x-2)(x-3)(x-4)·(x-5),则f′(3)=________.
9.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x.
(1)求f′(e)及f(e)的值;
(2)求f(x)在点(e2,f(e2))处的切线方程.
10.(2022·全国甲卷)已知函数f(x)=x3-x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.
(1)若x1=-1,求a;
(2)求a的取值范围.
11.已知曲线y=ex在点(x1,)处的切线与曲线y=ln x在点(x2,ln x2)处的切线相同,则(x1+1)(x2-1)等于( )
A.-1 B.-2 C.1 D.2
12.我们把分子、分母同时趋近于0的分式结构称为型分式,比如:当x→0时,的极限即为型.两个无穷小之比的极限可能存在,也可能不存在.为此,洛必达在1696年提出洛必达法则:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.如: = = =ex=e0=1,则 =________.
13.已知a,b为正实数,直线y=x-与曲线y=ln相切,则的取值范围是( )
A.(-∞,0) B.
C.[1,+∞) D.(0,1)
14.设ai(i=0,1,2,…,2 022)是常数,对于∀x∈R,都有x2 022=a0+a1(x-1)+a2(x-1)(x-2)+…+a2 022·(x-1)(x-2)…(x-2 022),则-a0+a1-a2+2!a3-3!a4+4!a5-…+2 020!a2 021-2 021!a2 022=________.
2024年数学高考大一轮复习第三章 §3.1 导数的概念及其意义、导数的运算: 这是一份2024年数学高考大一轮复习第三章 §3.1 导数的概念及其意义、导数的运算,共5页。试卷主要包含了导数运算法则等内容,欢迎下载使用。
2024年数学高考大一轮复习第三章 §3.1 导数的概念及其意义、导数的运算(附答单独案解析): 这是一份2024年数学高考大一轮复习第三章 §3.1 导数的概念及其意义、导数的运算(附答单独案解析),共2页。试卷主要包含了已知曲线C,写出一个同时具有性质等内容,欢迎下载使用。
2024年数学高考大一轮复习第三章 §3.1 导数的概念及其意义、导数的运算(附答单独案解析): 这是一份2024年数学高考大一轮复习第三章 §3.1 导数的概念及其意义、导数的运算(附答单独案解析),共4页。试卷主要包含了导数运算法则等内容,欢迎下载使用。