2024年数学高考大一轮复习第四章 §4.6 函数y=Asin(ωx+φ)的图象与性质
展开1.(2023·武汉模拟)为了得到y=sin的图象,只需将y=sin x图象上每一点的纵坐标不变( )
A.每一点的横坐标变为原来的,再向右平移个单位长度
B.每一点的横坐标变为原来的4倍,再向右平移个单位长度
C.先向右平移个单位长度,再把每一点的横坐标变为原来的4倍
D.先向右平移个单位长度,再把每一点的横坐标变为原来的
2.(2023·烟台模拟)函数f(x)=sin的图象是由函数g(x)的图象向左平移φ个单位长度得到的,若g=-f ,则φ的值为( )
A. B. C. D.
3.某城市一年12个月的平均气温与月份的关系可近似地用三角函数y=a+Acos (x-6)(x=1,2,3,…,12)来表示,已知6月份的平均气温最高,为28度,12月份的平均气温最低,为18度.则10月份的平均气温为( )
A.20.5度 B.21.5度
C.22.5度 D.23.5度
4.(2023·湘潭模拟)已知函数f(x)=Asin(ωx+φ)的部分图象如图所示,则将y=f(x)的图象向左平移个单位长度后,得到的图象对应的函数解析式为( )
A.y=-cos 2x B.y=cos 2x
C.y=sin D.y=sin
5.(2023·赤峰模拟)已知函数f(x)=cos,先将其图象上的所有点的横坐标伸长到原来的4倍(纵坐标不变),再将所得图象向右平移个单位长度,得到函数g(x)的图象,则( )
A.g(x)的最小正周期是2π
B.g(x)的最小值为-2
C.g(x)在(0,π)上单调递增
D.g(x)的图象关于点对称
6.已知函数f(x)=-sin2ωx(ω>0)的最小正周期为π,若将其图象沿x轴向右平移a(a>0)个单位长度,所得图象关于直线x=对称,则实数a的最小值为( )
A.π B.
C. D.
7.(2022·镇江模拟)已知函数f(x)=2sin,将函数y=f(x)的图象向左平移个单位长度,得到函数y=g(x)的图象,则g(x)在[0,2π]上的单调递减区间为________.
8.(2023·芜湖模拟)函数y=sin(2x+φ)的图象向右平移个单位长度后所得函数图象关于y轴对称,则φ=________.
9.(2022·杭州模拟)求范围和图象:
(1)y=sin x的函数图象先向左平移个单位长度,然后横坐标变为原来的,得到f(x)的图象,求f(x)在上的取值范围;
(2)如图所示, 请用“五点法”列表,并画出函数y=2sin在一个周期内的图象.
2x+ |
|
|
|
|
|
|
x |
|
|
|
|
|
|
y |
|
|
|
|
|
|
10.(2023·重庆模拟)已知函数f(x)=sin ωx+2cos2+m的最小值为-2.
(1)求函数f(x)的最大值;
(2)把函数y=f(x)的图象向右平移个单位长度,可得函数y=g(x)的图象,且函数y=g(x)在上单调递增,求ω的最大值.
11.函数f(x)=Asin(ωx+φ)+b的图象如图,则f(x)的解析式和S=f(0)+f(1)+f(2)+…+f(2 020)+f(2 021)+f(2 022)+f(2 023)的值分别为( )
A.f(x)=sin 2πx+1,S=2 023
B.f(x)=sin 2πx+1,S=2 023
C.f(x)=sin x+1,S=2 024
D.f(x)=sin x+1,S=2 024
12.(2023·福州模拟)已知函数f(x)=2sinsin+sin x,将函数f(x)的图象上所有点的横坐标缩短为原来的,纵坐标不变,然后再向左平移φ(φ>0)个单位长度,所得的图象关于y轴对称,则φ的值为( )
A. B.-
C. D.
13.(2023·包头模拟)如图为函数f(x)=Asin(2x+φ)的部分图象,对于任意的x1,x2∈[a,b],且x1≠x2,若f(x1)=f(x2),都有f(x1+x2)=,则φ=________.
14.风车发电是指把风的动能转化为电能.如图,风车由一座塔和三个叶片组成,每两个叶片之间的夹角均为120°.现有一座风车,塔高60米,叶片长度为30米.叶片按照逆时针方向匀速转动,并且6秒旋转一圈,风车开始旋转时,某叶片的一个端点P在风车的最低点(P离地面30米),设点P离地面的距离为S(米),转动时间为t(秒),则S与t之间的函数解析式为______,一圈内点P离地面的高度不低于45米的时长为________秒.
15.信息传递多数是以波的形式进行传递,其中必然会存在干扰信号(如y=Asin(ωx+φ),某种“信号净化器”可产生形如y=A0sin(ω0x+φ0)的波,只需要调整参数(A0,ω0,φ0),就可以产生特定的波(与干扰波波峰相同,方向相反的波)来“对抗”干扰.现有波形信号的部分图象,想要通过“信号净化器”过滤得到标准的正弦波(标准正弦函数图象),应将波形净化器的参数分别调整为( )
A.A0=,ω0=4,φ0=
B.A0=-,ω0=4,φ0=
C.A0=1,ω0=1,φ0=0
D.A0=-1,ω0=1,φ0=0
16.(2023·成都模拟)若函数f(x)=cos 2x+sin在(0,α)上恰有2个零点,则α的取值范围为( )
A. B.
C. D.
2024年数学高考大一轮复习第四章 §4.6 函数y=Asin(ωx+φ)的图象与性质: 这是一份2024年数学高考大一轮复习第四章 §4.6 函数y=Asin(ωx+φ)的图象与性质,共7页。试卷主要包含了8))等内容,欢迎下载使用。
2024年数学高考大一轮复习第四章 §4.6 函数y=Asin(ωx+φ)的图象与性质(附答单独案解析): 这是一份2024年数学高考大一轮复习第四章 §4.6 函数y=Asin(ωx+φ)的图象与性质(附答单独案解析),共5页。试卷主要包含了求范围和图象等内容,欢迎下载使用。
2024年数学高考大一轮复习第四章 §4.6 函数y=Asin(ωx+φ)的图象与性质(附答单独案解析): 这是一份2024年数学高考大一轮复习第四章 §4.6 函数y=Asin(ωx+φ)的图象与性质(附答单独案解析),共7页。试卷主要包含了8))等内容,欢迎下载使用。