|试卷下载
搜索
    上传资料 赚现金
    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 解析
      湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题(教师版含解析).docx
    • 原卷
      湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题(学生版).docx
    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案01
    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案02
    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案03
    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案01
    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案02
    还剩16页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案

    展开
    这是一份湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题及答案,文件包含湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题教师版含解析docx、湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题学生版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    2022~2023学年度第一学期

    武汉市部分学校高中一年级期中调研考试

    数学试卷

    本试卷共5页,22小题,全卷满分150分.考试用时120分钟.

    注意事项:

    1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.

    2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.

    3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.

    4.考试结束后,请将本试卷和答题卡一并上交.

    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 已知集合,则(    )

    A.  B.

    C.  D.

    【答案】C

    【解析】

    【分析】根据补集、并集的定义计算可得;

    【详解】解:因为,所以,因为,所以

    故选:C

    2. 已知集合,则(    )

    A.  B.  C.  D.

    【答案】A

    【解析】

    【分析】解不等式确定集合后再求交集即可.

    【详解】由题意

    所以

    故选:A

    3. 一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10黄金,售货员先将5的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为,则(    )

    A.  B.  C.  D. 以上都有可能

    【答案】A

    【解析】

    【分析】设天平的左臂长为,右臂长,则,售货员现将的砝码放在左盘,将黄金放在右盘使之平衡;然后又将的砝码放入右盘,将另一黄金放在左盘使之平衡,则顾客实际所得黄金为,利用杠杆原理和基本不等式的性质即可得出结论.

    【详解】由于天平两臂不等长,可设天平左臂长为,右臂长为,则

    再设先称得黄金为,后称得黄金为,则

    当且仅当,即时等号成立,但,等号不成立,即.

    因此,顾客购得的黄金.

    故选:A.

    4. 某地区居民生活用电分高峰和低谷两个时段进行分时计价.

    高峰时间段用电价格表

    低谷时间段用电价格表

    高峰月用电量

    (单位:千瓦时)

    高峰电价(单位:元/千瓦时)

    低谷月用电量

    (单位:千瓦时)

    低谷电价

    (单位:元/千瓦时)

    50及以下的部分

    0.568

    50及以下的部分

    0.288

    超过50200的部分

    0.598

    超过50200的部分

    0.318

    超过200的部分

    0.668

    超过200的部分

    0.388

    若某家庭7月份的高峰时间段用电量为250千瓦时,低谷时间段用电量为150千瓦时,则该家庭本月应付电费(    )

    A. 190.7 B. 197.7 C. 200.7 D. 207.7

    【答案】B

    【解析】

    【分析】分别求出高峰期用电费用和低谷期用电费即可得7月份的用电总费用.

    【详解】解:设表示用电量,表示用电费用,

    则高峰期时,

    低谷时期时,

    因为7月份的高峰时间段用电量为250千瓦时,

    所以高峰期用电费用为:

    又因为低谷时间段用电量为150千瓦时,

    所以低谷期用电费用为:

    所以7月份的总费用:().

    故选:B.

    5. 已知命题,使是真命题,则实数的取值范围是(    )

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】

    转化二次不等式的解集是非空集合,利用判别式求解即可.

    【详解】因为,使是真命题,

    所以二次不等式有解,所以,即

    解得

    故选:A

    【点睛】本题主要考查特称命题真假的判断,二次不等式的解法,转化思想的应用,属于中档题.

    6. 关于的不等式的解集为,则关于的不等式的解集为(    )

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】根据不等式解集可知,由根与系数的关系得出bca的关系,代入待求不等式即可求解.

    【详解】因为关于的不等式的解集为

    可知两根分别为

    根据跟与系数得关系可得解得

    带入可得,左右两边同时除以

    解得.

    故选:A

    7. 已知偶函数定义域为,且对于任意均有成立,若,则实数的取值范围是(    )

    A.  B.

    C.  D.

    【答案】C

    【解析】

    【分析】由题意可得单调递减,又函数为偶函数,故单调递增,所以不等式等价于,即解出即可.

    【详解】因为的定义域为,且对于任意

    均有成立,

    可得单调递减,

    又函数偶函数,

    所以单调递增,

    所以等价于

    所以

    解得:

    所以实数的取值范围是:

    故选:C.

    8. 若关于的不等式有且只有一个整数解,则实数的取值范围是(    )

    A.  B.

    C.  D.

    【答案】D

    【解析】

    【分析】分类讨论解不等式,然后由解集中只有一个整数分析得参数范围.

    【详解】时,不等式为,解为,不合题意,

    ,则不等式的解是,不合题意,

    因此只有,不等式的解为

    因此,解得

    故选:D

    二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.

    9. 设集合,则下列关系中正确的是(    ).

    A.  B.  C.  D.

    【答案】BC

    【解析】

    【分析】求出的定义域即得到集合,求出的值域即得到集合,表示二次函数图像上任意一点的坐标构成的点集,利用交集、并集及子集的定义即可判断.

    【详解】由题意可知:

    表示二次函数图像上任意一点的坐标构成的集合.

    故选:BC

    10. 已知集合,则实数取值为(    )

    A.  B.  C.  D.

    【答案】ABD

    【解析】

    【分析】

    先求集合A,由,然后分两种情况求解即可

    【详解】解:由,得

    所以

    因为,所以

    时,方程无解,则

    时,即,方程的解为

    因为,所以,解得

    综上,或,或

    故选:ABD

    【点睛】此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题

    11. ab为两个正数,定义ab的算术平均数为,几何平均数为.上个世纪五十年代,美国数学家D.H. Lehmer提出了“Lehmer均值,即,其中p为有理数.下列结论正确的是(    )

    A.  B.

    C.  D.

    【答案】AB

    【解析】

    【分析】根据基本不等式比较大小可判断四个选项.

    【详解】对于A,当且仅当时,等号成立,故A正确;

    对于B,当且仅当时,等号成立,故B正确;

    对于C,当且仅当时,等号成立,故C不正确;

    对于D,当时,由C可知,,故D不正确.

    故选:AB

    12. 已知函数是定义在上的奇函数,当时,,则下列结论正确的有(    )

    A.  B. 的单调递增区间为

    C. 时, D. 解集为

    【答案】CD

    【解析】

    【分析】A项,由奇函数性质可判断;

    B项,方法1:由多个单调区间的书写格式可判断;

    方法2:先研究当时,的单调区间,再研究的奇偶性可得的单调区间可判断;

    C项,由奇函数写出对称区间上的解析式;

    D项,解分式不等式可判断.

    【详解】对于A项,∵R上为奇函数,∴,故A项错误;

    对于C项,∵当时,

    ∴当时,,∴ 

    又∵R上为奇函数,∴ 

    ∴由①②得:当时,,故C项正确;

    对于B项,方法1:由多个单调区间用逗号(或“和”)隔开可知,B项错误;

    方法2:当时,

    ∴当时,;当时,

    ∴当时,

    ∴由单调性的性质可得:当时,单调递减区间,单调递增区间

    又∵R上为奇函数,

    ∴设,则

    为偶函数,即:为偶函数,

    在对称区间上的单调性相反,

    ∴当时,单调递减区间,单调递增区间

    ∴综述:单调递减区间,单调递增区间.

    B项错误;

    对于D项,∵

    即:

    即:

    解得:

    的解集为:.D项正确.

    故选:CD.

    三、填空题:本题共4小题,每小题5分,共20分.

    13. 已知,若,则实数=___________.

    【答案】2

    【解析】

    【分析】先求,再求,列出关于a的方程,求出a的值.

    【详解】因为,所以,而,所以,解得:

    故答案为:2

    14. 已知集合的子集只有两个,则实数的值为______

    【答案】01

    【解析】

    分析】分类讨论确定集合中元素或元素个数后得出其子集个数,从而得结论.

    【详解】时,,子集只有两个,满足题意,

    时,若,则,子集只有1个,不满足题意;

    ,即,则集合有两个元素,子集有4个,不满足题意,

    时,,子集只有两个,满足题意,

    所以1.

    故答案为:01

    15. 若函数是奇函数,,则__________ .

    【答案】

    【解析】

    【分析】根据定义域关于原点对称求出,再由求出即可求解.

    【详解】根据题意可得,解得

    ,代入解得

    时,,满足题意,

    所以.

    故答案为:

    16. 若实数,且,则的最小值为______

    【答案】

    【解析】

    【分析】由已知变形可得出,将相乘,展开后利用基本不等式可求得的最小值.

    【详解】因为实数,且,则

    所以,

    当且仅当时,即当时,等号成立.

    因此,的最小值为.

    故答案为:.

    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

    17. 已知,且

    (1)的值;

    (2)的值.

    【答案】(1)   

    (2)

    【解析】

    【分析】(1)根据同角三角函数基本关系求的值,进而可得的值;

    (2)利用诱导公式化简,再化弦为切,将的值代入即可求解.

    【小问1详解】

    ,且,所以

    所以

    【小问2详解】

    18. 已知关于的不等式的解集为(其中).

    (1)求实数ab的值;

    (2)解不等式

    【答案】(1)   

    (2)

    【解析】

    【分析】(1)由题意可知,方程的两根分别为,由韦达定理列方程求解即可.

    (2)由一元二次不等式的解法解方程即可.

    【小问1详解】

    由题意可知,方程的两根分别为

    所以,,解得

    【小问2详解】

    ,得

    解得

    因此,原不等式的解集为

    19. 已知函数

    (1)试判断函数在区间上的单调性,并用函数单调性定义证明;

    (2),使成立,求实数的范围.

    【答案】(1)单调递减;证明见解析   

    (2)

    【解析】

    【分析】(1)运用定义法这么函数单调性即可;

    (2)将能成立问题转化为最值问题,结合单调性求解最值.

    【小问1详解】

    在区间上单调递减,证明如下:

    ,∴

    ,∴

    所以,在区间上单调递减.

    【小问2详解】

    由(1)可知上单调递减,

    所以,当时,取得最小值,即

    ,使成立,∴只需成立,

    ,解得

    故实数的范围为

    20. 2020年初新冠肺炎袭击全球,严重影响人民生产生活.为应对疫情,某厂家拟加大生产力度.已知该厂家生产某种产品的年固定成本为200万元,每生产千件,需另投入成本.当年产量不足50千件时,(万元);年产量不小于50千件时,(万元).每千件商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.

    (1)写出年利润(万元)关于年产量(千件)的函数解析式;

    (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少?

    【答案】(1)(2)60280万元

    【解析】

    【分析】(1)可得销售额为万元,分即可求出;

    (2)时,利用二次函数性质求出最大值,当,利用基本不等式求出最值,再比较即可得出.

    【详解】(1)∵每千件商品售价为50万元.则x千件商品销售额万元

    时,

    时,

    (2)时,

    此时,当时,即万元

    时,

    此时,即,则万元

    由于

    所以当年产量为60千件时,该厂在这一商品生产中所获利润最大,最大利润为280万元.

    【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出.

    21. 已知函数的定义域为R,其图像关于点对称.

    (1)求实数ab的值;

    (2)的值;

    (3)若函数,判断函数的单调性(不必写出证明过程),并解关于t的不等式

    【答案】(1)   

    (2)1011    (3)

    【解析】

    【分析】(1)根据对称性列方程解出ab

    (2)根据对称性分组计算;

    (3)构造函数,根据函数的单调性和奇偶性求解不等式.

    【小问1详解】

    有条件可知函数 经过点 ,即

    解得:

    【小问2详解】

    由于

    【小问3详解】

    由于 是奇函数,根据函数平移规则, 也是奇函数,

    并且由于 是增函数, 也是增函数, 也是增函数,定义域为

    不等式 等价于

    ,由于 是增函数,

    ,解得

    综上,(1);(2);(3).

    22. 已知函数

    (1)解关于的不等式

    (2)若实数使得关于的方程对任意恒有四个不同的实根,求的取值范围.

    【答案】(1)详见解析   

    (2)

    【解析】

    【分析】(1)对不等式化简转化为含参一元二次不等式,对参数进行分类讨论即可求得结果;

    (2)令将“实数使得关于的方程对任意恒有四个不同的实根”转化成二次函数最值问题,然后再利用对勾函数或者函数的单调性即可求得的取值范围.

    【小问1详解】

    由题意,,即

    时,解不等式得,此时的解集为

    时,解不等式得,此时解集为

    时,解方程,得

    ①当时,即当时,解不等式得,此时解集为

    ②当时,即时,不等式无解,解集为

    ③当时,即当时,解不等式得,此时解集为

    综上,当时,原不等式的解集为

    时,不等式的解集为

    时,不等式的解集为

    时,不等式的解集为

    时,不等式的解集为

    【小问2详解】

    等价于

    所以,只需函数的图象有两个不同的交点即可.

    又因为即关于的二次函数开口向上得最小值恒成立.

    的单调性可知在区间单调递减,所以

    所以,即

    得,,即,解得

    ,得,即,解得

    所以,实数的取值范围是


     

    相关试卷

    湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题(教师版含解析): 这是一份湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题(教师版含解析),共19页。试卷主要包含了选择题的作答,非选择题的作答等内容,欢迎下载使用。

    湖北省武汉市部分学校2023-2024学年高一上学期期中数学试题(Word版附解析): 这是一份湖北省武汉市部分学校2023-2024学年高一上学期期中数学试题(Word版附解析),共19页。试卷主要包含了选择题的作答,非选择题的作答等内容,欢迎下载使用。

    【期中真题】湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题.zip: 这是一份【期中真题】湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题.zip,文件包含期中真题湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题原卷版docx、期中真题湖北省武汉市部分学校2022-2023学年高一上学期期中联考数学试题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map