所属成套资源:2023年中考数学二轮复习解答题专题(全国通用)
2023年二轮复习解答题专题八:解直角三角形的应用实物型
展开
这是一份2023年二轮复习解答题专题八:解直角三角形的应用实物型,文件包含2023年二轮复习解答题专题八解直角三角形的应用实物型原卷版docx、2023年二轮复习解答题专题八解直角三角形的应用实物型解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
2023年二轮复习解答题专题八:解直角三角形的应用实物型方法点睛解直角三角形的实际应用题解题方法解直角三角形的实际应用题的实质还是解直角三角形,所以解决此类问题时,要先将实际问题转化为数学模型,再将数学模型转化为解直角三角形问题.当图中没有直角三角形时,通过作垂线构造直角三角形解决问题.典例分析例1 (2022湘潭中考)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中):伞柄始终平分,,当时,伞完全打开,此时.请问最少需要准备多长的伞柄?(结果保留整数,参考数据:)
专题过关1. (2022盐城中考. 年月日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,是垂直于工作台的移动基座,、为机械臂,,,,机械臂端点到工作台的距离.
求、两点之间的距离;
求长.
结果精确到,参考数据:,,,
2 (2022绍兴中考)圭表(如图是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” 和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ,当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表垂直圭,已知该市冬至正午太阳高度角(即为,夏至正午太阳高度角(即为,圭面上冬至线与夏至线之间的距离(即的长)为4米. (1)求∠BAD度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)3. (2022宁波中考) 每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)4. (2022嘉兴中考)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知,,,,.(结果精确到0.1,参考数据:,,,,,)
(1)连结,求线段的长.(2)求点A,B之间的距离. 5. (2022成都中考) 2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角时,顶部边缘处离桌面的高度的长为,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角时(点是的对应点),用眼舒适度较为理想.求此时顶部边缘处离桌面的高度的长.(结果精确到;参考数据:,,)6. (2022吉林中考)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)7 (2022焦作二模)图1所示的是一款非常畅销的简约落地收纳镜,其支架的形状固定不变,镜面可随意调节,图2所示的是其侧面示意图,其中OD为镜面,EF为放置物品的收纳架,AB,AC为等长的支架,BC为水平地面,已知,.(1)求支架顶点A到地面BC的距离.(2)如图3,将镜面顺时针旋转15°,求此时收纳镜顶部端点O到地面BC的距离.(结果都精确到1cm,参考数据:,)8. (2022常德中考) 第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道米,弧形跳台的跨度米,顶端到的距离为40米,,,,.求此大跳台最高点距地面的距离是多少米(结果保留整数).(参考数据:,,,,,,,,)
9.(2022驻马店六校联考二模) 图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地l,活动杆CD固定在支撑杆上的点E处,若∠AED=48°,BE=110 cm,DE=80 cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74, cos48°≈0.67, tan48°≈1. 11)
10. (2022新乡牧野三模)为了响应节能减排的号召,李豪同学决定骑自行车上下学,他将自行车放在水平的地面上,如图,车把头下方处与坐垫下方处平行于地面水平线,测得cm,,与的夹角分别为45°与60°.(1)求点到的距离(结果保留一位小数);(2)若点到地面的距离为30cm,坐垫中轴与点的距离为6cm.根据李豪同学身高比例,坐垫到地面的距离为73cm至74cm之间时,骑乘该自行车最舒适.请你通过计算判断出李豪同学骑乘该自行车是否能达到最佳舒适度.(参考数据:,)11. (2022河南夏邑一模)如图(1)是一种迷你型可收缩式乐谱支架,图(2)是其侧面示意图,其中,Q是的中点,P是眼睛所在的位置,于点M,,当时,P为最佳视力点.(1)若,则_______;(2)当且时,请通过计算说明点P是不是最佳视力点.(参考数据:)12. (2022临汾二模)如图1是某中学教学楼的推拉门,已知门的宽度米,且两扇门的大小相同(即),将左边的门,绕门轴向里面旋转,将右边的门绕门轴向外面旋转,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据)13.(2021嘉兴中考)(10分)一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cm,BE=4cm.当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)14.(2021鄂尔多斯中考)图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图,托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)15.(2021盐城中考)(10分)某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)16. (2021宁波中考) 我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄始终平分同一平面内两条伞骨所成的角,且,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点的位置,且A,B,三点共线,,B为中点,当时,伞完全张开.
(1)求的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:)
相关试卷
这是一份2023学年二轮复习解答题专题十九:二次函数的应用——面积型问题,文件包含2023年二轮复习解答题专题十九二次函数的应用面积型问题原卷版docx、2023年二轮复习解答题专题十九二次函数的应用面积型问题解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份2023年二轮复习解答题专题九:解直角三角形的应用课题学习,文件包含2023年二轮复习解答题专题八解直角三角形的应用课题学习原卷版docx、2023年二轮复习解答题专题八解直角三角形的应用课题学习解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份2023年二轮复习解答题专题七:解直角三角形的应用拥抱型,文件包含2023年二轮复习解答题专题七解直角三角形的应用拥抱型原卷版docx、2023年二轮复习解答题专题七解直角三角形的应用拥抱型解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。