- 新教材2023_2024学年高中数学第2章平面解析几何初步2.5圆的方程2.5.2圆的一般方程分层作业课件湘教版选择性必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第2章平面解析几何初步2.5圆的方程2.6.1直线与圆的位置关系分层作业课件湘教版选择性必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第2章平面解析几何初步2.7用坐标方法解决几何问题分层作业课件湘教版选择性必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第2章平面解析几何初步2.7用坐标方法解决几何问题课件湘教版选择性必修第一册 课件 0 次下载
- 新教材2023_2024学年高中数学第2章平面解析几何初步培优课对称问题的解法分层作业课件湘教版选择性必修第一册 课件 0 次下载
高中数学湘教版(2019)选择性必修 第一册2.6 直线与圆、圆与圆的位置关系作业课件ppt
展开1.已知圆C1:x2+y2=1和C2:x2+y2-5x+4=0,则两圆的位置关系是( )A.内切B.相交C.外切D.相离
2.若圆C1:(x+1)2+y2=2与圆C2:x2+y2-4x+6y+m=0内切,则实数m=( )A.-8B.-19C.-5D.6
3.圆心在直线x-y-4=0上,且经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点的圆的方程为( )A.x2+y2-x+7y-32=0B.x2+y2-x+7y-16=0C.x2+y2-4x+4y+9=0D.x2+y2-4x+4y-8=0
解析 设所求圆的方程为(x2+y2+6x-4)+λ(x2+y2+6y-28)=0,变形可得
则圆的方程为(-6)x2+(-6)y2+6x-42y+192=0,即x2+y2-x+7y-32=0.故选A.
4.设圆C1:(x-1)2+(y-1)2=9和圆C2:(x+2)2+(y+1)2=4交于A,B两点,则线段AB的垂直平分线所在直线的方程为( )A.3x-2y-1=0B.2x-3y+1=0C.2x+3y-1=0D.3x+2y+4=0
解析 由题得,圆心C1的坐标为(1,1),圆心C2的坐标为(-2,-1),两圆相交于A,B两点,则线段AB的垂直平分线所在直线就是直线C1C2.因为C1(1,1),C2(-2,-1),
即2x-3y+1=0.故选B.
解析 由圆C:x2+(y-4)2=18与圆D:(x-1)2+(y-1)2=R2,可得两圆公共弦所在直线的方程为2x-6y=4-R2.
6.(多选题)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是( )A.-3B.3C.2D.-2
解析 根据题意,圆C:x2-2ax+y2+a2-1=0,即(x-a)2+y2=1,其圆心为(a,0),半径为R=1,圆D:x2+y2=4,其圆心的坐标为D(0,0),半径为r=2.若两个圆有且仅有两条公共切线,则两圆相交,则有2-1<|a|<2+1,即1<|a|<3,解得-37.已知圆(x-a)2+y2=4与圆x2+y2=25没有公共点,则正数a的取值范围为 .
(0,3)∪(7,+∞)
解析 根据题意,圆(x-a)2+y2=4的圆心的坐标为(a,0),半径为R=2,圆x2+y2=25圆心的坐标为(0,0),半径r=5,则两圆的圆心距d=|a|=a.若两个圆没有公共点,则有a>R+r=7或a
解析 根据题意,圆A:x2+y2-2x-4y-4=0,即(x-1)2+(y-2)2=9,其圆心A(1,2),半径R=3,圆B:x2+y2+2x+2y-2=0,即(x+1)2+(y+1)2=4,其圆心B(-1,-1),半径r=2,则
9.已知半径为 的圆M与圆x2+y2=5外切于点P(1,2),则点M的坐标为( )A.(-6,3)B.(3,6)C.(-3,-6)D.(6,3)
10.若直线l与圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=4都相切,切点分别为A,B,则|AB|=( )
解析 如图所示,设直线l交x轴于点M.由于直线l与圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=4都相切,切点分别为A,B,则AC1⊥l,BC2⊥l,∴AC1∥BC2.∵|BC2|=2=2|AC1|,由中位线定理得C1为线段MC2的中点,则A为线段BM的中点,∴|MC1|=|C1C2|=2.
11.已知圆O1:x2+y2-2x-3=0与圆O2:x2+y2-4x+2y+3=0相交于点A,B,则四边形AO1BO2的面积是( )A.1B.2C.3D.4
12.(多选题)点P在圆C1:x2+y2=1上,点Q在圆C2:x2+y2-6x+8y+24=0上,则( )A.|PQ|的最小值为0B.|PQ|的最大值为7C.两个圆心所在的直线斜率为D.两个圆相交弦所在直线的方程为6x-8y-25=0
解析 根据题意,圆C1:x2+y2=1,其圆心的坐标为C1(0,0),半径R=1.圆C2:x2+y2-6x+8y+24=0,即(x-3)2+(y+4)2=1,其圆心的坐标为C2(3,-4),半径r=1,则两圆的圆心距为|C1C2|= =5,即圆C1与圆C2外离,则|PO|的最小值为|C1C2|-R-r=3,最大值为|C1C2|+R+r=7,故A错误,B正确;圆心C1(0,0),圆心C2(3,-4),则两个圆心所在的直线斜率 ,故C正确;两圆圆心距|C1C2|=5,有|C1C2|>R+r=2,两圆外离,不存在公共弦,D错误.故选BC.
13.(多选题)已知圆O:x2+y2=4和圆M:x2+y2+4x-2y+4=0相交于A,B两点,则( )A.直线AB的方程为y=2x+2B.两圆有两条公切线
解析 圆O:x2+y2=4和圆M:x2+y2+4x-2y+4=0作差得4x-2y+4=-4,整理得y=2x+4,即直线AB的方程为y=2x+4,故A错误;因为两圆相交于A,B两点,则两圆有两条公切线,故B正确;圆O:x2+y2=4的圆心O(0,0),半径为2,
14.若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20(m>0)相交于A,B两点,且两圆在点A处的切线互相垂直,则AB的直线方程为 .
若两圆在交点A处的切线互相垂直,则O1A⊥O2A,则有|O1O2|2=R2+r2,即m2=5+20=25,则m=5.故圆O2的方程为(x+5)2+y2=20,即x2+y2+10x+5=0.
①-②,得-10x-10=0,整理得x+1=0,即x=-1,故公共弦AB所在的直线方程为x=-1.
15.已知圆C1:x2+y2+2x=0,圆C2:x2+y2-2x-2y-2=0,点C1,C2分别为两圆的圆心.(1)求圆C1和圆C2的公共弦长;(2)过点C1的直线l交圆C2于A,B两点,且AB= ,求直线l的方程.
解 (1)由题知,圆C1:x2+y2+2x=0,圆C2:x2+y2-2x-2y-2=0,两式相减可得公共弦所在的直线为2x+y+1=0.
16.在平面直角坐标系中,已知点A(2,0),B(0,2),圆C:(x-a)2+y2=1,若圆C上存在点M,使得|MA|2+|MB|2=12,则实数a的取值范围为( )
解析 设M(x,y),∵|MA|2+|MB|2=12,∴(x-2)2+y2+x2+(y-2)2=12,∴(x-1)2+(y-1)2=4.∵圆C上存在点M,满足|MA|2+|MB|2=12,∴两圆相交或相切.
高中数学湘教版(2019)选择性必修 第一册2.6 直线与圆、圆与圆的位置关系多媒体教学课件ppt: 这是一份高中数学湘教版(2019)选择性必修 第一册2.6 直线与圆、圆与圆的位置关系多媒体教学课件ppt,共30页。PPT课件主要包含了新知初探•课前预习,题型探究•课堂解透,d>r1+r2,d=r1+r2,d=r1-r2,d<r1-r2,内切或外切,外离或内含,答案D,答案A等内容,欢迎下载使用。
高中数学湘教版(2019)选择性必修 第一册2.6 直线与圆、圆与圆的位置关系教课内容课件ppt: 这是一份高中数学湘教版(2019)选择性必修 第一册2.6 直线与圆、圆与圆的位置关系教课内容课件ppt,共31页。PPT课件主要包含了新知初探•课前预习,题型探究•课堂解透,答案B,答案D,答案C,答案A,x-3y-13=0,x-y-2=0等内容,欢迎下载使用。
高中数学湘教版(2019)选择性必修 第一册2.6 直线与圆、圆与圆的位置关系备课ppt课件: 这是一份高中数学湘教版(2019)选择性必修 第一册2.6 直线与圆、圆与圆的位置关系备课ppt课件,共36页。PPT课件主要包含了目录索引等内容,欢迎下载使用。