2017年山东省济宁市中考数学试卷与答案
展开2017年山东省济宁市中考数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.的倒数是( )
A. 6 B. C. D.
2.单项式9xmy3与单项式4x2yn是同类项,则m+n的值是( )
A.2 B.3 C.4 D.5
3.下列图形是中心对称图形的是( )
4.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是( )
A.1.6×10﹣4 B.1.6×10﹣5 C.1.6×10﹣6 D.16×10﹣4
5.下列哪个几何体,它的主视图、俯视图、左视图都相同的是( )
A B C D2
6.若在实数范围内有意义,则满足的条件是( )
A. B. C. D.
7.计算(a2)3+a2•a3﹣a2÷a﹣3,结果是( )
A.2a5﹣a B.2a5﹣ C.a5 D.a6
8.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A. B. C. D.
9.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是( )
A. B. C. D.
10.如图,A,B是半径为1的⊙O上两点,且OA⊥OB. 点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是( )
A. ① B.④ C.②或④ D. ①或③
二、填空题(共5小题,每小题3分,满分15分)
11. 分解因式:ma2+2mab+mb2= .
12.请写出一个过(1,1),且与x轴无交点的函数表达式: .
13.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那 么乙也共有钱48文.甲,乙二人原来各有多少钱?”设甲原有x文钱,乙原有y文钱,可列方程组为 .
14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为 .
15.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是 .
三、解答题(共7小题,共55分)
16.解方程:
17.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:
(1)该班总人数是 ;
(2)根据计算,请你补全两个统计图;
(3)观察补全后的统计图,写出一条你发现的结论.
18.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:
y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?]
(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
19.如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)求AE的长.
20.(8分)实验探究:
(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.
(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.
21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.
(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;
(2)题(1)中求得的函数记为C1,
①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;
②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.
22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.
例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.
请你运用所学知识,结合上述材料,解决下列问题:
在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.
(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;
(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;
(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.
2017年山东省济宁市中考数学试卷答案
1. A.2. D.3. C.4. B.5. B.6. C7. D.8. B.9. A.10. D.
11. m(a+b)212. y=(答案不唯一).13. .14. a+b=0.15. .
16.解:去分母得:2x=x﹣2+1,
移项合并得:x=﹣1,
经检验x=﹣1是分式方程的解.
17.解:(1)由题意可得:
该班总人数是:22÷55%=40(人);
故答案为:40;
(2)由(1)得,第四次优秀的人数为:40×85%=34(人),
第三次优秀率为:×100%=80%;
如图所示:
;
(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.
18.解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,
w与x之间的函数解析式w=﹣x2+90x﹣1800;
(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,
∵﹣1<0,
当x=45时,w有最大值,最大值是225.
(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,
∵50>48,x2=50不符合题意,舍,
答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.
19.(1)证明:连接OD,
∵D为的中点,
∴=,
∴∠BOD=∠BAE,
∴OD∥AE,
∵DE⊥AC,
∴∠ADE=90°,
∴∠AED=90°,
∴OD⊥DE,
则DE为圆O的切线;
(2)解:过点O作OF⊥AC,
∵AC=10,
∴AF=CF=AC=5,
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED为矩形,
∴FE=OD=AB,
∵AB=12,
∴FE=6,
则AE=AF+FE=5+6=11.
20.解:(1)猜想:∠MBN=30°.
理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,
∴NA=NB,
由折叠可知,BN=AB,
∴AB=BN=AN,
∴△ABN是等边三角形,
∴∠ABN=60°,
∴NBM=∠ABM=∠ABN=30°.
(2)结论:MN=BM.
折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.
理由:由折叠可知△MOP≌△MNP,
∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,
∠MOP=∠MNP=90°,
∴∠BOP=∠MOP=90°,
∵OP=OP,
∴△MOP≌△BOP,
∴MO=BO=BM,
∴MN=BM.
21.解:(1)∵函数图象与x轴有两个交点,
∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,
解得:m<且m≠0.
∵m为符合条件的最大整数,
∴m=2.
∴函数的解析式为y=2x2+x.
(2)抛物线的对称轴为x=﹣=﹣.
∵n≤x≤﹣1<﹣,a=2>0,
∴当n≤x≤﹣1时,y随x的增大而减小.
∴当x=n时,y=﹣3n.
∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).
∴n的值为﹣2.
(3)∵y=2x2+x=2(x+)2﹣,
∴M(﹣,﹣).
如图所示:
当点P在OM与⊙O的交点处时,PM有最大值.
设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.
∴OM的解析式为y=x.
设点P的坐标为(x,x).
由两点间的距离公式可知:OP==,
解得:x=2或x=﹣2(舍去).
∴点P的坐标为(2,1).
∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.
22.解:(1)∵∠ONP=∠M,∠NOP=∠MON,
∴△NOP∽△MON,
∴点P是△MON的自相似点;
过P作PD⊥x轴于D,则tan∠POD=,
∴∠AON=60°,
∵当点M的坐标是(,3),点N的坐标是(,0),
∴∠MNO=90°,
∵△NOP∽△MON,
∴∠NPO=∠MNO=90°,
在Rt△OPN中,OP=ONcos60°=,
∴OD=OPcos60°=×=,PD=OP•sin60°=×=,
∴P(,);
(2)作MH⊥x轴于H,如图3所示:
∵点M的坐标是(3,),点N的坐标是(2,0),
∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,
分两种情况:
①如图3所示:∵P是△MON的相似点,
∴△PON∽△NOM,作PQ⊥x轴于Q,
∴PO=PN,OQ=ON=1,
∵P的横坐标为1,
∴y=×1=,
∴P(1,);
②如图4所示:
由勾股定理得:MN==2,
∵P是△MON的相似点,
∴△PNM∽△NOM,
∴,即,
解得:PN=,
即P的纵坐标为,代入y=得:=x,
解得:x=2,
∴P(2,);
综上所述:△MON的自相似点的坐标为(1,)或(2,);
(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:
∵M(,3),N(2,0),
∴OM=2=ON,∠MON=60°,
∴△MON是等边三角形,
∵点P在△MON的内部,
∴∠PON≠∠OMN,∠PNO≠∠MON,
∴存在点M和点N,使△MON无自相似点.
2016年山东省济宁市中考数学试卷答案: 这是一份2016年山东省济宁市中考数学试卷答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2015年山东省济宁市中考数学试卷答案: 这是一份2015年山东省济宁市中考数学试卷答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2014年山东省济宁市中考数学试卷答案: 这是一份2014年山东省济宁市中考数学试卷答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。