|试卷下载
搜索
    上传资料 赚现金
    2016年至2018年潍坊市三年中考数学试卷及答案(微信支付)
    立即下载
    加入资料篮
    2016年至2018年潍坊市三年中考数学试卷及答案(微信支付)01
    2016年至2018年潍坊市三年中考数学试卷及答案(微信支付)02
    2016年至2018年潍坊市三年中考数学试卷及答案(微信支付)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2016年至2018年潍坊市三年中考数学试卷及答案(微信支付)

    展开
    这是一份2016年至2018年潍坊市三年中考数学试卷及答案(微信支付),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    潍坊市2016年中考数学试卷
    一、选择题:本大题共12小题,每小题3分
    1.计算:20•2﹣3=(  )
    A.﹣B. C.0 D.8
    2.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是(  )
    A. B. C. D.
    4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)(  )
    A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012
    5.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是(  )

    A.﹣2a+b B.2a﹣b C.﹣b D.b
    6.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于(  )
    A.15° B.30° C.45° D.60°
    7.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是(  )
    A. B. C. D.
    8.将下列多项式因式分解,结果中不含有因式a+1的是(  )
    A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1
    9.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是(  )
    A.10 B.8C.4D.2

    10.若关于x的方程+=3的解为正数,则m的取值范围是(  )
    A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣
    11.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是(  )
    A.﹣B.﹣C.﹣D.﹣
    12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是(  )
    A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23
    二、填空题:本大题共6小题,每小题3分
    13.计算:(+)=      .
    14.若3x2nym与x4﹣nyn﹣1是同类项,则m+n=      .
    15.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
    测试项目
    创新能力
    综合知识
    语言表达
    测试成绩(分数)
    70
    80
    92
    将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是      分.
    16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是    .
    17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是      .
    18.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是      .

    三、解答题:本大题共7小题,共66分
    19.关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.







    20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
    评估成绩n(分)
    评定等级
    频数
    90≤n≤100
    A
    2
    80≤n<90
    B

    70≤n<80
    C
    15
    n<70
    D
    6
    根据以上信息解答下列问题:
    (1)求m的值;
    (2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
    (3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.





























    21.正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:
    (1)四边形EBFD是矩形;
    (2)DG=BE.




































    22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)


































    23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
    (1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
    (2)当每辆车的日租金为多少元时,每天的净收入最多?







































    24.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.
    (1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;
    (2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.































    25.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P时直线AC下方抛物线上的动点.
    (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
    (3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

     
    潍坊市2016年中考数学试卷答案
    一、1. B.2. D.3. C.4. B. 5. A.6. B.7. D.8. C.9. D.10. B.11. A.12. C. 
    二、13. 12. 14. .15. 77.4. 16.﹣3<x<﹣1.17. 2.18.(2n﹣1,2n﹣1).
    三、19.解:设方程的另一根为t.
    依题意得:3×()2+m﹣8=0,
    解得m=10.
    又t=﹣,
    所以t=﹣4.
    综上所述,另一个根是﹣4,m的值为10.
    20.解:(1)∵C等级频数为15,占60%,
    ∴m=15÷60%=25;
    (2)∵B等级频数为:25﹣2﹣15﹣6=2,
    ∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
    (3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:

    ∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
    ∴其中至少有一家是A等级的概率为: =.
    21.证明:(1)∵正方形ABCD内接于⊙O,
    ∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,
    又∵DF∥BE,
    ∴∠EDF+∠BED=180°,
    ∴∠EDF=90°,
    ∴四边形EBFD是矩形;
    (2))∵正方形ABCD内接于⊙O,
    ∴的度数是90°,
    ∴∠AFD=45°,
    又∵∠GDF=90°,
    ∴∠DGF=∠DFC=45°,
    ∴DG=DF,
    又∵在矩形EBFD中,BE=DF,
    ∴BE=DG.
    22.解:延长AD交BC的延长线于E,作DF⊥BE于F,
    ∵∠BCD=150°,
    ∴∠DCF=30°,又CD=4,
    ∴DF=2,CF==2,
    由题意得∠E=30°,
    ∴EF==2,
    ∴BE=BC+CF+EF=6+4,
    ∴AB=BE×tanE=(6+4)×=(2+4)米,
    答:电线杆的高度为(2+4)米.
     
    23.解:(1)由题意知,若观光车能全部租出,则0<x≤100,
    由50x﹣1100>0,
    解得x>22,
    又∵x是5的倍数,
    ∴每辆车的日租金至少应为25元;
    (2)设每辆车的净收入为y元,
    当0<x≤100时,y1=50x﹣1100,
    ∵y1随x的增大而增大,
    ∴当x=100时,y1的最大值为50×100﹣1100=3900;
    当x>100时,
    y2=(50﹣)x﹣1100
    =﹣x2+70x﹣1100
    =﹣(x﹣175)2+5025,
    当x=175时,y2的最大值为5025,
    5025>3900,
    故当每辆车的日租金为175元时,每天的净收入最多是5025元.
    24.(1)证明:如图1,连接BD,交AC于O,
    在菱形ABCD中,∠BAD=60°,AD=AB,
    ∴△ABD为等边三角形,
    ∵DE⊥AB,
    ∴AE=EB,
    ∵AB∥DC,
    ∴==,
    同理, =,
    ∴MN=AC;
    (2)解:∵AB∥DC,∠BAD=60°,
    ∴∠ADC=120°,又∠ADE=∠CDF=30°,
    ∴∠EDF=60°,
    当∠EDF顺时针旋转时,
    由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,
    DE=DF=,∠DEG=∠DFP=90°,
    在△DEG和△DFP中,

    ∴△DEG≌△DFP,
    ∴DG=DP,
    ∴△DGP为等边三角形,
    ∴△DGP的面积=DG2=3,
    解得,DG=2,
    则cos∠EDG==,
    ∴∠EDG=60°,
    ∴当顺时针旋转60°时,△DGP的面积等于3,
    同理可得,当逆时针旋转60°时,△DGP的面积也等于3,
    综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.
     
    25.解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,
    ∴,
    ∴,
    ∴抛物线的解析式为y=x2+2x+1,
    (2)∵AC∥x轴,A(0,1)
    ∴x2+2x+1=1,
    ∴x1=6,x2=0,
    ∴点C的坐标(﹣6,1),
    ∵点A(0,1).B(﹣9,10),
    ∴直线AB的解析式为y=﹣x+1,
    设点P(m, m2+2m+1)
    ∴E(m,﹣m+1)
    ∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,
    ∵AC⊥EP,AC=6,
    ∴S四边形AECP
    =S△AEC+S△APC
    =AC×EF+AC×PF
    =AC×(EF+PF)
    =AC×PE
    =×6×(﹣m2﹣3m)
    =﹣m2﹣9m
    =﹣(m+)2+,
    ∵﹣6<m<0
    ∴当m=﹣时,四边形AECP的面积的最大值是,
    此时点P(﹣,﹣).
    (3)∵y=x2+2x+1=(x+3)2﹣2,
    ∴P(﹣3,﹣2),
    ∴PF=yF﹣yP=3,CF=xF﹣xC=3,
    ∴PF=CF,
    ∴∠PCF=45°
    同理可得:∠EAF=45°,
    ∴∠PCF=∠EAF,
    ∴在直线AC上存在满足条件的Q,
    设Q(t,1)且AB=9,AC=6,CP=3
    ∵以C、P、Q为顶点的三角形与△ABC相似,
    ①当△CPQ∽△ABC时,
    ∴,
    ∴,
    ∴t=﹣4,
    ∴Q(﹣4,1)
    ②当△CQP∽△ABC时,
    ∴,
    ∴,
    ∴t=3,∴Q(3,1).
    潍坊市2017年中考数学试卷
    一、选择题(每小题3分,满分36分)。
    1.下列算式,正确的是(  )
    A.a3×a2=a6 B.a3÷a=a3 C.a2+a2=a4 D.(a2)2=a4
    2.如图所示的几何体,其俯视图是(  )
    A. B. C. D.
    3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为(  )
    A.1×103 B.1000×108 C.1×1011 D.1×1014
    4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是(  )
    A.(﹣2,1) B.(﹣1,1) C.(1,﹣2) D.(﹣1,﹣2)

    5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于(  )之间.

    A.B与C B.C与D C.E与F D.A与B
    6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足(  )
    A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
    7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选(  )



    平均数
    9
    8
    方差
    1
    1

    A.甲 B.乙 C.丙 D.丁
    8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是(  )
    A. B. C. D.
    9.若代数式有意义,则实数x的取值范围是(  )
    A.x≥1 B.x≥2 C.x>1 D.x>2
    10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为(  )
    A.50° B.60° C.80° D.90°
    11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为(  ).
    A.0或 B.0或2 C.1或 D.或﹣
    12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为(  )
    A.或2 B.或2 C.或2 D.或2
    二、填空题(每小题3分,共18分)。
    13.计算:(1﹣)÷=   .
    14.因式分解:x2﹣2x+(x﹣2)=   .
    15.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:   ,可以使得△FDB与△ADE相似.(只需写出一个)

    16.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是   .
    17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为   个.

    18.如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE=BC.则矩形纸片ABCD的面积为   . 
    三、 解答题:
    19.本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.
    (1)根据给出的信息,补全两幅统计图;
    (2)该校九年级有600名男生,请估计成绩未达到良好有多少名?
    (3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?










    20.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73)








    21.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元.
    (1)求两批次购进蒜薹各多少吨?
    (2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?









    22.如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.
    (1)求证:EF为半圆O的切线;
    (2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)






















    23.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
    (1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
    (2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?



















    24.边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2
    (1)如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.
    (2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.
    ①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;
    ②连接AP,当AP最大时,求AD′的值.(结果保留根号)


















    25.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t
    (1)求抛物线的解析式;
    (2)当t何值时,△PFE的面积最大?并求最大值的立方根;
    (3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.

     
    潍坊市2017年中考数学试卷答案
    一、1.D2.D.3.C.4.B.5.A.6. B.7.C8.C.9.B10. C.11.A12. D.
    二、13.x+1,14.(x+1)(x﹣2).15.DF∥AC,或∠BFD=∠A.16. k≤1且k≠0.17. 9n+3.
    18. 15, 
    19.解:(1)抽取的学生数:16÷40%=40(人);
    抽取的学生中合格的人数:40﹣12﹣16﹣2=10,
    合格所占百分比:10÷40=25%,
    优秀人数:12÷40=30%,
    如图所示:

    (2)成绩未达到良好的男生所占比例为:25%+5%=30%,
    所以600名九年级男生中有600×30%=180(名);
    (3)如图:

    可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,
    所以甲、乙两人恰好分在同一组的概率P==.
    20.解:设每层楼高为x米,
    由题意得:MC′=MC﹣CC′=2.5﹣1.5=1米,
    ∴DC′=5x+1,EC′=4x+1,
    在Rt△DC′A′中,∠DA′C′=60°,∴C′A′==(5x+1),
    在Rt△EC′B′中,∠EB′C′=30°,∴C′B′==(4x+1),
    ∵A′B′=C′B′﹣C′A′=AB,∴(4x+1)﹣(5x+1)=14,
    解得:x≈3.17,则居民楼高为5×3.17+2.5≈18.4米. 
    21.解:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨.
    由题意,
    解得,
    答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.
    (2)设精加工m吨,总利润为w元,则粗加工吨.
    由m≤3,解得m≤75,
    利润w=1000m+400=600m+40000,
    ∵600>0,∴w随m的增大而增大,∴m=75时,w有最大值为85000元.
    22.(1)证明:连接OD,
    ∵D为的中点,∴∠CAD=∠BAD,
    ∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,
    ∵DE⊥AC,∴∠E=90°,
    ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;
    (2)解:连接OC与CD,
    ∵DA=DF,∴∠BAD=∠F,
    ∴∠BAD=∠F=∠CAD,
    又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,
    ∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,
    ∵OD⊥EF,∠F=30°,∴∠DOF=60°,
    在Rt△ODF中,DF=6,∴OD=DF•tan30°=6,
    在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA•sin30,EA=DA•cos30°=9,
    ∵∠COD=180°﹣∠AOC﹣∠DOF=60°,∴CD∥AB,
    故S△ACD=S△COD,
    ∴S阴影=S△AED﹣S扇形COD=×9×3﹣π×62=﹣6π.

    23.解:(1)如图所示:

    设裁掉的正方形的边长为xdm,
    由题意可得(10﹣2x)(6﹣2x)=12,
    即x2﹣8x+12=0,解得x=2或x=6(舍去),
    答:裁掉的正方形的边长为2dm,底面积为12dm2;
    (2)∵长不大于宽的五倍,
    ∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,
    设总费用为w元,由题意可知
    w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,
    ∵对称轴为x=6,开口向上,
    ∴当0<x≤2.5时,w随x的增大而减小,
    ∴当x=2.5时,w有最小值,最小值为25元,
    答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元. 
    24.解:(1)当CC'=时,四边形MCND'是菱形.
    理由:由平移的性质得,CD∥C'D',DE∥D'E',
    ∵△ABC是等边三角形,
    ∴∠B=∠ACB=60°,
    ∴∠ACC'=180°﹣∠ACB=120°,
    ∵CN是∠ACC'的角平分线,
    ∴∠D'E'C'=∠ACC'=60°=∠B,
    ∴∠D'E'C'=∠NCC',
    ∴D'E'∥CN,
    ∴四边形MCND'是平行四边形,
    ∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
    ∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',
    ∵E'C'=2,
    ∵四边形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;
    (2)①AD'=BE',
    理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',
    由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',
    当α=180°时,AD'=AC+CD',BE'=BC+CE',
    即:AD'=BE',
    综上可知:AD'=BE'.
    ②如图连接CP,
    在△ACP中,由三角形三边关系得,AP<AC+CP,
    ∴当点A,C,P三点共线时,AP最大,
    如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,
    在Rt△APD'中,由勾股定理得,AD'==2.


    25.解:(1)由题意可得,解得,
    ∴抛物线解析式为y=﹣x2+2x+3;
    (2)∵A(0,3),D(2,3),
    ∴BC=AD=2,
    ∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),
    ∵直线l将平行四边形ABCD分割为面积相等两部分,
    ∴直线l过平行四边形的对称中心,
    ∵A、D关于对称轴对称,
    ∴抛物线对称轴为x=1,
    ∴E(3,0),
    设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,
    ∴直线l的解析式为y=﹣x+,
    联立直线l和抛物线解析式可得,解得或,
    ∴F(﹣,),
    如图1,作PH⊥x轴,交l于点M,作FN⊥PH,

    ∵P点横坐标为t,
    ∴P(t,﹣t2+2t+3),M(t,﹣t+),
    ∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,
    ∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,
    ∴当t=时,△PEF的面积最大,其最大值为×,
    ∴最大值的立方根为=;
    (3)由图可知∠PEA≠90°,
    ∴只能有∠PAE=90°或∠APE=90°,
    ①当∠PAE=90°时,如图2,作PG⊥y轴,

    ∵OA=OE,
    ∴∠OAE=∠OEA=45°,
    ∴∠PAG=∠APG=45°,
    ∴PG=AG,
    ∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),
    ②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,

    则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,
    ∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,
    ∴∠PAQ=∠KPE,且∠PKE=∠PQA,
    ∴△PKE∽△AQP,
    ∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),
    综上可知存在满足条件的点P,t的值为1或.






    潍坊市2018年中考数学试卷
    一、选择题(本大题共12小题,每小题选对得3分)
    1.|1﹣|=( )
    A.1﹣ B.﹣1 C.1+ D.﹣1﹣
    2.生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是( )
    A.3.6×10﹣5 B.0.36×10﹣5 C.3.6×10﹣6 D.0.36×10﹣6
    3.如图所示的几何体的左视图是( )
    A. B. C. D.
    4.下列计算正确的是( )
    A.a2•a3=a6 B.a3÷a=a3 C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a3
    5.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是( )
    A.45° B.60° C.75° D.82.5°

    第5题图 第6题图 第10题图
    6.如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:
    (1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;
    (2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
    (3)连接BD,BC.
    下列说法不正确的是( )
    A.∠CBD=30° B.S△BDC=AB2 C.点C是△ABD的外心 D.sin2A+cos2D=l
    7.某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为( )
    年龄
    19
    20
    21
    22
    24
    26
    人数
    1
    1
    x
    y
    2
    1
    A.22,3 B.22,4 C.21,3 D.21,4
    8.在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为( )
    A.(2m,2n) B.(2m,2n)或(﹣2m,﹣2n)
    C.(m,n) D.(m,n)或(﹣m,﹣n)
    9.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为( )
    A.3或6 B.1或6 C.1或3 D.4或6
    10.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是( )
    A.Q(3,240°) B.Q(3,﹣120°) C.Q(3,600°) D.Q(3,﹣500°)
    11.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是( )
    A.2 B.﹣1 C.2或﹣1 D.不存在
    12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是( )
    A. B. C. D.
    二、填空题(共6小题,每小题3分)
    13.因式分解:(x+2)x﹣x﹣2=   .
    14.当m=   时,解分式方程=会出现增根.
    15.用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是   .

    16.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为   .

    17.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是   .
    18.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行   小时即可到达.(结果保留根号)
    三、解答题(本大题共7小题,共66分)
    19.(7分)如图,直线y=3x﹣5与反比例函数y=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积.

    20.(8分)如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.(1)求证:AE=BF;(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.
























    21.(8分)为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区n户家庭的月用水量,绘制了下面不完整的统计图.(1)求n并补全条形统计图;(2)求这n户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为5m3和和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率.








    22.(8分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.(1)求证:AE与⊙O相切于点A;
    (2)若AE∥BC,BC=2,AC=2,求AD的长.





    23.(11分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.
    (1)分别求每台A型,B型挖掘机一小时挖土多少立方米?
    (2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?























    24.(12分)如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.
    (1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.
    ①求四边形BHMM′的面积;
    ②直线EF上有一动点N,求△DNM周长的最小值.
    (2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.
















    25.(12分)如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
     

    潍坊市2018年中考数学试卷答案
    一、1. B.2. C.3. D.4. C.5. C.6. D.7. D.8. B.9. B.10. D.11. A.12. D. 
    二、13.(x+2)(x﹣1).14. 2.15. 34+9.16.(﹣1,).17. .18. .
    三、19.解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,
    ∴﹣6=3n﹣5,
    解得:n=﹣,
    ∴B(﹣,﹣6),
    ∵反比例函数y=的图象过点B,
    ∴k﹣1=﹣×(﹣6),
    解得:k=3;

    (2)设直线y=3x﹣5分别与x轴、y轴交于C、D,
    当y=0时,3x﹣5=0,x=,
    即OC=,
    当x=0时,y=﹣5,
    即OD=5,
    ∵A(2,m)在直线y=3x﹣5上,
    ∴m=3×2﹣5=1,
    即A(2,1),
    ∴△AOB的面积S=S△BOD+S△COD+S△AOC=××5+×5+×1=.
    20.(1)证明:∵四边形ABCD为正方形,
    ∴BA=AD,∠BAD=90°,
    ∵DE⊥AM于点E,BF⊥AM于点F,
    ∴∠AFB=90°,∠DEA=90°,
    ∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
    ∴∠ABF=∠EAD,
    在△ABF和△DEA中

    ∴△ABF≌△DEA(AAS),
    ∴BF=AE;
    (2)解:设AE=x,则BF=x,DE=AF=2,
    ∵四边形ABED的面积为24,
    ∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),
    ∴EF=x﹣2=4,
    在Rt△BEF中,BE==2,
    ∴sin∠EBF===.
    21.解:(1)n=(3+2)÷25%=20,
    月用水量为8m3的户数为20×55%﹣7=4户,
    月用水量为5m3的户数为20﹣(2+7+4+3+2)=2户,
    补全图形如下:

    (2)这20户家庭的月平均用水量为=6.95(m3),
    因为月用水量低于6.95m3的有11户,
    所以估计小莹所住小区420户家庭中月用水量低于6.95m3的家庭户数为420×=231户;
    (3)月用水量为5m3的两户家庭记为a、b,月用水量为9m3的3户家庭记为c、d、e,
    列表如下:

    a
    b
    c
    d
    e
    a

    (b,a)
    (c,a)
    (d,a)
    (e,a)
    b
    (a,b)

    (c,b)
    (d,b)
    (e,b)
    c
    (a,c)
    (b,c)

    (d,c)
    (e,c)
    d
    (a,d)
    (b,d)
    (c,d)

    (e,d)
    e
    (a,e)
    (b,e)
    (c,e)
    (d,e)

    由表可知,共有20种等可能结果,其中满足条件的共有12种情况,
    所以选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率为=.
    22.证明:(1)连接OA,交BC于F,则OA=OB,
    ∴∠D=∠DAO,
    ∵∠D=∠C,
    ∴∠C=∠DAO,
    ∵∠BAE=∠C,
    ∴∠BAE=∠DAO,(2分)
    ∵BD是⊙O的直径,
    ∴∠BAD=90°,
    即∠DAO+∠BAO=90°,
    ∴∠BAE+∠BAO=90°,即∠OAE=90°,
    ∴AE⊥OA,
    ∴AE与⊙O相切于点A;(4分)
    (2)∵AE∥BC,AE⊥OA,
    ∴OA⊥BC,(5分)
    ∴,FB=BC,
    ∴AB=AC,
    ∵BC=2,AC=2,
    ∴BF=,AB=2,
    在Rt△ABF中,AF==1,
    在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
    ∴OB=4,(7分)
    ∴BD=8,
    ∴在Rt△ABD中,AD====2.(8分)
     
    23.解:(1)设每台A型,B型挖据机一小时分别挖土x立方米和y立方米,根据题意得

    解得:
    ∴每台A型挖掘机一小时挖土30立方米,每台B型挖掘机一小时挖土15立方米
    (2)设A型挖掘机有m台,总费用为W元,则B型挖掘机有(12﹣m)台.
    根据题意得
    W=4×300m+4×180(12﹣m)=480m+8640

    ∴解得
    ∵m≠12﹣m,解得m≠6
    ∴7≤m≤9
    ∴共有三种调配方案,
    方案一:当m=7时,12﹣m=5,即A型挖据机7台,B型挖掘机5台;
    方案二:当m=8时,12﹣m=4,即A型挖掘机8台,B型挖掘机4台;
    方案三:当m=9时,12﹣m=3,即A型挖掘机9台,B型挖掘机3台.…
    ∵480>0,由一次函数的性质可知,W随m的减小而减小,
    ∴当m=7时,W小=480×7+8640=12000
    此时A型挖掘机7台,B型挖据机5台的施工费用最低,最低费用为12000元.
    24.解:(1)①在▱ABCD中,AB=6,直线EF垂直平分CD,

    ∴DE=FH=3,
    又BF:FA=1:5,
    ∴AH=2,
    ∵Rt△AHD∽Rt△MHF,
    ∴,
    即,
    ∴HM=1.5,
    根据平移的性质,MM'=CD=6,连接BM,如图1,
    四边形BHMM′的面积=;
    ②连接CM交直线EF于点N,连接DN,如图2,

    ∵直线EF垂直平分CD,
    ∴CN=DN,
    ∵MH=1.5,
    ∴DM=2.5,
    在Rt△CDM中,MC2=DC2+DM2,
    ∴MC2=62+(2.5)2,
    即MC=6.5,
    ∵MN+DN=MN+CN=MC,
    ∴△DNM周长的最小值为9.
    (2)∵BF∥CE,
    ∴,
    ∴QF=2,
    ∴PK=PK'=6,
    过点K'作E'F'∥EF,分别交CD于点E',交QK于点F',如图3,

    当点P在线段CE上时,
    在Rt△PK'E'中,
    PE'2=PK'2﹣E'K'2,
    ∴,
    ∵Rt△PE'K'∽Rt△K'F'Q,
    ∴,
    即,
    解得:,
    ∴PE=PE'﹣EE'=,
    ∴,
    同理可得,当点P在线段DE上时,,如图4,

    综上所述,CP的长为或.
    25.解:(1)由已知,c=,
    将B(1,0)代入,得:a﹣+=0,
    解得a=﹣,
    抛物线解析式为y1=,
    ∵抛物线y1平移后得到y2,且顶点为B(1,0),
    ∴y2=﹣(x﹣1)2,
    即y2=﹣.
    (2)存在,
    如图1:

    抛物线y2的对称轴l为x=1,设T(1,t),
    已知A(﹣3,0),C(0,),
    过点T作TE⊥y轴于E,则
    TC2=TE2+CE2=12+()2=t2﹣,
    TA2=TB2+AB2=(1+3)2+t2=t2+16,
    AC2=,
    当TC=AC时,t2﹣=
    解得:t1=,t2=;
    当TA=AC时,t2+16=,无解;
    当TA=TC时,t2﹣=t2+16,
    解得t3=﹣;
    当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形.

    (3)如图2:

    设P(m,﹣),则Q(m,﹣)
    ∵Q、R关于x=1对称
    ∴R(2﹣m,﹣),
    ①当点P在直线l左侧时,
    PQ=1﹣m,QR=2﹣2m,
    ∵△PQR与△AMG全等,
    ∴当PQ=GM且QR=AM时,m=0,
    ∴P(0,),即点P、C重合.
    ∴R(2,﹣),
    由此求直线PR解析式为y=﹣,
    当PQ=AM且QR=GM时,无解;
    ②当点P在直线l右侧时,
    同理:PQ=m﹣1,QR=2m﹣2,
    则P(2,﹣),R(0,﹣),
    PQ解析式为:y=﹣;
    ∴PR解析式为:y=﹣或y=﹣







    相关试卷

    2014年至2018年潍坊市五年中考数学试卷及答案(微信支付): 这是一份2014年至2018年潍坊市五年中考数学试卷及答案(微信支付),共35页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2011年至2018年潍坊市八年中考数学试卷及答案(微信支付): 这是一份2011年至2018年潍坊市八年中考数学试卷及答案(微信支付),共54页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    2009年至2018年潍坊市十年中考数学试卷及附答案(微信支付): 这是一份2009年至2018年潍坊市十年中考数学试卷及附答案(微信支付),共67页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map