|课件下载
终身会员
搜索
    上传资料 赚现金
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件
    立即下载
    加入资料篮
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件01
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件02
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件03
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件04
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件05
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件06
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件07
    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件08
    还剩44页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件

    展开
    这是一份2024届高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件,共52页。PPT课件主要包含了极大值,极小值,极大值点,极小值点,列表如下等内容,欢迎下载使用。

    必备知识·回顾教材重“四基”
    一、教材概念·结论·性质重现1.函数的极值与导数
    1.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.2.函数的极大值不一定大于极小值,函数的极小值也不一定小于极大值.
    2.函数的最值与导数(1)一般地,如果在闭区间[a,b]上函数f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)若函数f(x)在[a,b]上单调递增,则_______为函数的最小值,_______为函数的最大值;若函数f(x)在[a,b]上单调递减,则_______为函数的最大值,_______为函数的最小值.
    函数的极值是“局部”概念,函数的最值是“整体”概念,闭区间上函数的最值一定是极值或区间端点对应的函数值.
    二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)函数的极大值不一定比极小值大.(  )(2)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(  )(3)函数的极大值一定是函数的最大值.(  )(4)开区间上的单调连续函数无最值.(  )
    关键能力·研析考点强“四翼”
    考点1 利用导数求函数的极值——综合性
    考点2 利用导数求函数的最值——综合性
    考点3 极值与最值的综合应用——综合性
    考向1 根据函数的图象判断函数的极值例1 (1)若函数f(x),g(x)的导函数的图象分别如图(1)、图(2)所示,则f(x)与g(x)极值点的个数分别为(  )
    A.4,1B.2,2C.4,2D.2,1
    A 解析:对于可导函数,函数的极值点满足两个条件:一个是该点的导数为0,另一个是该点左右两侧的导数值异号.由图象可知f(x)的导函数有4个零点,且4个零点的左右两侧的导数值异号,故f(x)有4个极值点;由图象可知g(x)的导函数有两个零点,但只有一个零点的左右两侧的导数值异号,故g(x)有1个极值点.
    (2)(2022·西安模拟)设函数f(x)在R上可导,其导函数为f′(x)且函数y=(1-x)·f′(x)的图象如图所示,则下列结论一定成立的是(  )
    A.函数f(x)的极大值是 f(2),极小值是f(1)B.函数f(x)的极大值是 f(-2),极小值是 f(1)C.函数f(x)的极大值是 f(2),极小值是 f(-2)D.函数f(x)的极大值是f(-2),极小值是 f(2)
    D 解析:由函数的图象可知,f′(-2)=0,f′(2)=0,并且当x<-2时,f′(x)>0,当-2<x<1时,f′(x)<0,故函数f(x)有极大值f(-2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).
    由图象判断函数y=f(x)的极值的两个关注点(1)由导函数y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点.(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,进而可得函数y=f(x)的单调性.
    求函数f(x)极值的一般解题步骤(1)确定函数的定义域.(2)求导数f′(x).(3)解方程f′(x)=0,求出函数定义域内的所有根.(4)列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.(5)求出极值.
    (2)(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则(  )A.abC.aba2
    D 解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故a≠b.依题意,x=a为函数f(x)=a(x-a)2(x-b)的极大值点,当a<0时,由x>b时,f(x)≤0,画出f(x)的图象如图所示:
    由图可知ba2.当a>0时,由x>b时,f(x)>0,画出f(x)的图象如图所示:
    由图可知b>a,a>0,故ab>a2.综上所述,ab>a2成立.
    根据函数极值情况求参数的2个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:求解后验证根的合理性.
    2.已知函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则(  )A.a=-4,b=11B.a=3,b=-3或a=-4,b=11C.a=-1,b=5D.以上都不正确
    求最值的3种情况(1)若函数f(x)在区间[a,b]上单调递增或单调递减,f(a)与f(b)中有一个为最大值,另一个为最小值.(2)若函数f(x)在闭区间[a,b]内有极值,要先求出[a,b]上的极值,与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点.
    例5 (1)(多选题)(2022·新高考Ⅰ卷)已知函数f(x)=x3-x+1,则(  )A.f(x)有两个极值点B.f(x)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2x是曲线y=f(x)的切线
    令h(x)=x3-x,该函数的定义域为R,h(-x)=(-x)3-(-x)=-x3+x=-h(x),则h(x)是奇函数,(0,0)是h(x)的对称中心,将h(x)的图象向上移动一个单位得到f(x)的图象,所以点(0,1)是曲线y=f(x)的对称中心,故C正确;令f′(x)=3x2-1=2,可得x=±1,又f(1)=f(-1)=1,当切点为(1,1)时,切线方程为y=2x-1,当切点为(-1,1)时,切线方程为y=2x+3,故D错误.故选AC.
    求极值、最值时,要求步骤规范、表格齐全.函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值,不能想当然地认为极值点就是最值点.含参数时,要讨论参数的大小.
    1.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是(  )A.-13B.-15C.10D.15
    A 解析:对函数f(x)求导得f′(x)=-3x2+2ax,由函数f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,所以a=3.由此可得f(x)=-x3+3x2-4,f′(x)=-3x2+6x.易知f(x)在[-1,0)上单调递减,在[0,1]上单调递增,所以当m∈[-1,1]时,f(m)min=f(0)=-4.又因为f′(x)=-3x2+6x的图象开口向下,且对称轴为x=1,所以当n∈[-1,1]时,f′(n)min=f′(-1)=-9.故f(m)+f′(n)的最小值为-13.
    相关课件

    2024版高考数学一轮总复习第3章导数及其应用第2节导数的应用第2课时导数与函数的极值最值课件: 这是一份2024版高考数学一轮总复习第3章导数及其应用第2节导数的应用第2课时导数与函数的极值最值课件,共52页。

    高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件: 这是一份高考数学一轮复习第3章第2节第2课时导数与函数的极值、最值课件,共60页。PPT课件主要包含了极小值点,极大值,极大值点,极小值,√××√,考点1考点2考点3等内容,欢迎下载使用。

    高考数学(理)一轮复习课件+讲义 第3章 第2讲 第2课时 导数与函数的极值、最值: 这是一份高考数学(理)一轮复习课件+讲义 第3章 第2讲 第2课时 导数与函数的极值、最值,文件包含高考数学理一轮复习课件第3章第2讲第2课时导数与函数的极值最值pptx、高考数学理一轮复习讲义第3章第2讲第2课时导数与函数的极值最值doc等2份课件配套教学资源,其中PPT共40页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map