广西壮族自治区百色市贵百联考2024届高三上学期9月月考数学试题
展开2024届广西名校开学考试试题
数学
(考试时间:150分钟 满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单选题:共8小题,每小题5分,共40分,每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A. B. C. D.
2.若复数z满足,则在复平面内复数z所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.函数是奇函数,则( )
A. B. C. D.2
4.已知数列是公比为正数的等比数列,是其前n项和,,,则( )
A.15 B.31 C.63 D.7
5.圆M:,圆N:,则两圆的一条公切线方程为( )
A. B.
C. D.
6.某中学体育节中,羽毛球单打12强中有3个种子选手,将这12人任意分成3个组(每组4个人),则3个种子选手恰好被分在同一组的分法种数为( )
A.210 B.105 C.315 D.630
7.圆锥的底面圆半径,侧面的平面展开图的面积为,则此圆锥的体积为( )
A. B. C. D.
8.设,,,则( )
A. B. C. D.
二、多选题:共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错得0分.
9.下列命题中,正确的命题是( )
A.数据4,5,6,7,8的第80百分位数为7
B.若经验回归方程为时,则变量x与y负相关
C.对于随机事件A,B,若,则A与B相互独立
D.某学习小组调查5名男生和5名女生的成绩,其中男生成绩的平均数为9,方差为13;女生成绩的平均数为7,方差为10,则该10人成绩的方差为10.5
10.已知抛物线C:的焦点为F,过F的直线与C交于A、B两点,且A在x轴上方,过A、B分别作C的准线的垂线,垂足分别为、,则( )
A.若A的纵坐标为3,则
B.
C.准线方程为
D.以为直径的圆与直线相切于F
11.已知四面体的四个面均为直角三角形,其中平面,,且.若该四面体的体积为,则( )
A.平面 B.平面平面
C.的最小值为3 D.四面体外接球的表面积的最小值为
12.函数的两个极值点分别是,,则下列结论正确的是( )
A. B.
C. D.
三、填空题:本题共4小题,每小题5分,共20分.
13.的展开式中的系数为________.
14.已知,,则________.
15.函数在上恰有2个零点,则的取值范围是________.
16.已知椭圆C:的左、右焦点分别为,,点P在C上,若,,则C的离心率为________.
四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.
17.(本题10分)已知数列满足:,,数列是以4为公差的等差数列.
(1)求数列的通项公式;
(2)记数列的前n项和为,求的值.
18.(本题12分)在中,角A,B,C的对边分别是a,b,c,且.
(1)求的值;
(2)若,,D是线段上的一点,求的最小值.
19.(本题12分)四边形为菱形,平面,,,.
(1)设中点为,证明:平面;
(2)求平面与平面的夹角的大小.
20.(本题12分)某研究小组为研究经常锻炼与成绩好差的关系,从全市若干所学校中随机抽取100名学生进行调查,其中有体育锻炼习惯的有45人.经调查,得到这100名学生近期考试的分数的频率分布直方图.记分数在600分以上的为优秀,其余为合格.
(1)请完成下列列联表.根据小概率值的独立性检验,分析成绩优秀与体育锻炼有没有关系.
| 经常锻炼 | 不经常锻炼 | 合计 |
合格 | 25 |
|
|
优秀 |
| 10 |
|
合计 |
|
| 100 |
(2)现采取分层抽样的方法,从这100人中抽取10人,再从这10人中随机抽取5人进行进一步调查,记抽到5人中优秀的人数为X,求X的分布列.
附:,其中.
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
21.(本题12分)已知双曲线C:一个焦点F到渐近线的距离为.
(1)求双曲线C的方程;
(2)过点的直线与双曲线C的右支交于A,B两点,在x轴上是否存在点N,使得为定值?如果存在,求出点N的坐标及该定值;如果不存在,请说明理由.
22.(本题12分)已知函数.
(1)当时,讨论在区间上的单调性;
(2)若当时,,求a的取值范围.
2024届广西名校开学考试试题
数学参考答案
一、单选题:共8小题,每小题5分,共40分,每小题给出的四个选项中,只有一项是符合题目要求的.
1.,,则,故选:D.
2.由,对应点坐标为,在第二象限.故选:B.
3.函数为奇函数,∴,,解得,选C.
4.设公比为,,,解得,,故,选A.
5.设切线,,得或,则,;另两条切线与直线平行且相距为1,又由,设切线,则,得,则,选C.
6.3个种子选手分在同一组的方法有种,故选:C.
7.设母线为,展开图,,高,,选A.
8.构造,,,在上单调递减,又,,即,又,故,选B.
二、多选题:共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错得0分.
9.对于A,由于,则4,5,6,7,8的第50百分位数为,故A错;对于B,若方程为时,则变量x与y负相关,故B正确;对于C,若,则有,可得,则A与B相互独立,故C正确;对于D,10人的成绩平均,则10人的方差,故D错;选BC.
10.抛物线的焦点,准线,故C正确;设直线为,,,则,,联立方程,消y得:,则,
对A:∵,A错;对B:∵,,
∴,∴,不互垂直,B错误;
对D:∵,,∴的中点到直线的距离,又∵,故以为直径的圆与直线相切于F,D正确;故选:CD.
11.如图,将四面体补全为长方体,因为平面,平面,所以,又,所以平面,故A正确;因为平面,所以,又因为平面平面,平面,,平面,则即为二面角的平面角,因为为锐角,即二面角为锐二面角,故B不对;设,,,得,,当且仅当时等号成立,,故C正确.设四面体外接球的半径为,则,当且仅当时等号成立,所以,即四面体外接球的表面积的最小值为,故D正确.故选:ACD.
12.对于A,定义域为,,令,在上有两个不等实根,,,得,故A正确;对于B,由韦达得,故B错误;对于C,由,,C正确;对于D,,令,,,令,,,即函数在上单调递减,,则函数在上单调递减,于是,所以,故D正确;故选:ACD
三、填空题:本题共4小题,每小题5分,共20分.
13.的通项,令,则;令,,的展开式中的系数为,答案为90.
14.,,答案22.
15.化简得,又,得,因在上恰有2个零点,,解得.
16.,,O是的中点,所以,故由得,因为,,所以,在中,,在中,,∴,即,则,离心率为.
四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.
17.(1)根据题意可得;·····························································2分
,················································································4分
又符合上式,所以···································································5分
(2)·············································································7分
·················································································10分
18.(1)由条件得:·································································2分
所以,即,解得·····································································4分
又,所以··········································································6分
(2)由,则.······································································8分
设的边上的高为h.的面积:,
∴,.···········································································11分
∵B是钝角,∴当时,垂足在边上,即的最小值是···········································12分
19.(1)四边形为菱形,且,所以.
因为,所以,·······································································2分
因为平面,平面,所以.······························································4分
又,,平面,
所以平面;·········································································5分
(2)设交于点,取中点,连接,所以,底面.以为原点,以,,分别为轴,轴,轴的正方向建立空间直角坐标系,
因为,所以,
所以,,,,,,···································································6分
所以,,
设平面的一个法向量为,则,令得
所以;············································································8分
,,平面的一个法向量为,
则,令得;········································································10分
所以,···········································································11分
所以平面与平面的夹角的大小为.······················································12分
20.(1)填列联表
| 经常锻炼 | 不经常锻炼 | 合计 |
合格 | 25 | 45 | 70 |
优秀 | 20 | 10 | 30 |
合计 | 45 | 55 | 100 |
·················································································2分
零假设:成绩是否优秀与是否经常体育锻炼无关
.················································································5分
根据小概率值的独立性检验,推断不成立,
故成绩优秀与是否经常体育锻炼有关联····················································6分
(2)根据直方图大于600分的频率为,小于600分的频率为,
故由分层抽样知,抽取的10人中合格有人,优秀的为人········································7分
则从这10人中随机抽取5人,优秀人数X服从超几何分布,由题意X的可能值为0,1,2,3··············8分
,,,
·················································································11分
故分布列为
X | 0 | 1 | 2 | 3 |
P |
·················································································12分
21.(1)由双曲线得渐近线方程为,设,则,··············································2分
∴双曲线C方程为;··································································4分
(2)依题意,直线的斜率不为0,设其方程为,,···········································5分
代入得,设,,,
则,,············································································7分
∴
·················································································9分
若要上式为定值,则必须有,即,······················································10分
∴,·············································································11分
故存在点满········································································12分
22.(1),········································································1分
当时,;当时,·····································································3分
故在上单调递增,在上单调递减;·······················································4分
(2)设,;········································································5分
设,则,令,则,
当,,当,,故函数在单调递增,在单调递减,
所以;············································································7分
令,可得,故在单调递增时,···························································8分
当时,,故在上单调递增······························································9分
当时,,且当时,,若,则,
函数在上单调递增,因此,,符合条件···················································10分
若,则存在,使得,即,
当时,,则在上单调递减,此时,不符合条件.
综上,实数的取值范围是······························································12分
广西壮族自治区“贵百河”名校2023-2024学年高二上学期12月联考数学试卷(含答案): 这是一份广西壮族自治区“贵百河”名校2023-2024学年高二上学期12月联考数学试卷(含答案),共14页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广西“贵百河”高二上学期12月新高考月考测试数学试题含答案: 这是一份2023-2024学年广西“贵百河”高二上学期12月新高考月考测试数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,证明题,解答题等内容,欢迎下载使用。
2023-2024学年广西壮族自治区高一上学期12月贵百河三市联考数学试题(含解析): 这是一份2023-2024学年广西壮族自治区高一上学期12月贵百河三市联考数学试题(含解析),共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。