![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)01](http://img-preview.51jiaoxi.com/3/3/14820883/2-1694520609038/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)02](http://img-preview.51jiaoxi.com/3/3/14820883/2-1694520609067/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)03](http://img-preview.51jiaoxi.com/3/3/14820883/2-1694520609088/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)01](http://img-preview.51jiaoxi.com/3/3/14820883/0-1694520596030/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)02](http://img-preview.51jiaoxi.com/3/3/14820883/0-1694520596064/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)03](http://img-preview.51jiaoxi.com/3/3/14820883/0-1694520596089/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)01](http://img-preview.51jiaoxi.com/3/3/14820883/3-1694520613505/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)02](http://img-preview.51jiaoxi.com/3/3/14820883/3-1694520613527/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)03](http://img-preview.51jiaoxi.com/3/3/14820883/3-1694520613550/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)01](http://img-preview.51jiaoxi.com/3/3/14820883/1-1694520597398/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)02](http://img-preview.51jiaoxi.com/3/3/14820883/1-1694520597430/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)03](http://img-preview.51jiaoxi.com/3/3/14820883/1-1694520597456/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
(新高考)高考数学一轮复习讲练测 第10章 第4讲 随机事件的概率与古典概型 (2份打包,原卷版+教师版)
展开第4讲 随机事件的概率与古典概型
一、知识梳理
1.概率与频率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B⊇A
(或A⊆B)
相等关系
若B⊇A且A⊇B,那么称事件A与事件B相等
A=B
并事件
(和事件)
若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)
A∪B
(或A+B)
交事件
(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B
(或AB)
互斥事件
若A∩B为不可能事件,那么称事件A与事件B互斥
A∩B=∅
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=∅
且A∪B=Ω
3.古典概型
(1)基本事件的特点
①任何两个基本事件是互斥的;
②任何事件(除不可能事件)都可以表示成基本事件的和.
(2)特点
①试验中所有可能出现的基本事件只有有限个,即有限性.
②每个基本事件发生的可能性相等,即等可能性.
(3)概率公式
P(A)=.
4.对古典概型的理解
(1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.正确判断试验的类型是解决概率问题的关键.
(2)古典概型是一种特殊的概率模型,但并不是所有的试验都是古典概型.
常用结论
概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率:P(A)=1.
(3)不可能事件的概率:P(A)=0.
(4)概率的加法公式
如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
(5)对立事件的概率
若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1﹣P(B).
二、教材衍化
1.袋中装有3个白球,4个黑球,从中任取3个球,则
①恰有1个白球和全是白球;
②至少有1个白球和全是黑球;
③至少有1个白球和至少有2个白球;
④至少有1个白球和至少有1个黑球.
在上述事件中,是互斥事件但不是对立事件的为________.
2.容量为20的样本数据,分组后的频数如下表:
分组
[10,20)
[20,30)
[30,40)
[40,50)
[50,60)
[60,70)
频数
2
3
4
5
4
2
则样本数据落在区间[10,40)的频率为________.
3.袋中装有6个白球, 5个黄球,4个红球.从中任取一球,则取到白球的概率为________.
4.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________.
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)事件发生的频率与概率是相同的.( )
(2)随机事件和随机试验是一回事.( )
(3)在大量重复试验中,概率是频率的稳定值.( )
(4)两个事件的和事件发生是指这两个事件至少有一个发生.( )
(5)若A,B为互斥事件,则P(A)+P(B)=1.( )
(6)在一次试验中,其基本事件的发生一定是等可能的.( )
二、易错纠偏
(1)确定互斥事件、对立事件出错;
(2)基本事件计数错误.
1.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.
2.掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为________.
3.已知函数f(x)=2x2﹣4ax+2b2,若a∈{4,6,8},b∈{3,5,7},则该函数有两个零点的概率为________.
考点一 随机事件的频率与概率(基础型)
在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.
核心素养:数学抽象、数据分析
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:
X
1
2
3
4
Y
51
48
45
42
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)完成下表,并求所种作物的平均年均收获量;
Y
51
48
45
42
频数
4
(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.
某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(1)完成频率分布表;
近20年六月份降雨量频率分布表
降雨量
70
110
140
160
200
220
频率
(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490万千瓦时或超过530万千瓦时的概率.
考点二 互斥事件、对立事件的概率(基础型)
通过实例,了解两个互斥事件的概率加法公式.
核心素养:数学建模
某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.记1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)1张奖券的中奖概率;
(2)1张奖券不中特等奖且不中一等奖的概率.
求复杂互斥事件的概率的两种方法
(1)直接法
(2)间接法(正难则反,特别是“至多”“至少”型题目,用间接法求解简单)
1.某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.则他乘火车或乘飞机去的概率为________.
2.经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排队等候的概率;
(2)至少3人排队等候的概率.
考点三 古典概型的概率(应用型)
通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
核心素养:数学建模、数学运算
角度一 简单的古典概型的概率
(1)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B. C. D.
(2)将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为( )
A. B. C. D.
(1)古典概型中基本事件的探求方法
(2)利用公式法求解古典概型问题的步骤
角度二 古典概型与其他知识的综合问题
(1)从集合{2,3,4,5}中随机抽取一个数a,从集合{1,3,5}中随机抽取一个数b,则向量m=(a,b)与向量n=(1,﹣1)垂直的概率为( )
A. B. C. D.
(2)已知a∈{﹣2,0,1,2,3},b∈{3,5},则函数f(x)=(a2﹣2)ex+b为减函数的概率是( )
A. B. C. D.
(3)将一个骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是( )
A.(-,+∞) B.(-∞,) C.(-,) D.(-,)
解决古典概型中交汇问题的方法
解决与古典概型交汇的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.
1.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )
A. B. C. D.
2.2021年广东新高考将实行3+1+2模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为( )
A. B. C. D.
3.2019年1月1日,济南轨道交通1号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”的活动.市民可以通过济南地铁APP抢票,小陈抢到了三张体验票,准备从四位朋友小王、小张、小刘、小李中随机选择两位与自己一起去参加体验活动,则小王和小李至多一人被选中的概率为________.
[基础题组练]
1.(多选)下列4个命题错误的是( )
A.对立事件一定是互斥事件
B.若A,B为两个事件,则P(A+B)=P(A)+P(B)
C.若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1
D.若事件A,B满足P(A)+P(B)=1,则A,B是对立事件
2.西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6 C.0.7 D.0.8
3.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( )
A. B. C. D.
4.(多选)某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )
A.P1·P2= B.P1=P2= C.P1+P2= D.P1>P2
5.大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( )
A. B. C. D.
6.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.
7.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.“恰好3枚正面都朝上”的概率是________;“至少有2枚反面朝上”的概率是________.
8.已知|p|≤3,|q|≤3,当p,q∈Z,则方程x2+2px﹣q2+1=0有两个相异实数根的概率是________.
9.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元)
0
1 000
2 000
3 000
4 000
车辆数(辆)
500
130
100
150
120
(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
10.在某大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)求五名志愿者中仅有一人参加A岗位服务的概率.
[综合题组练]
1.已知甲、乙、丙各有一张自己的身份证,现把三张身份证收起来后,再随机分给甲、乙、丙每人一张,则恰有一人取到自己身份证的概率为( )
A. B. C. D.
2.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为( )
A. B. C. D.
3.连续抛掷同一颗均匀的骰子,记第i次得到的向上一面的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为幸运数字,则幸运数字为3的概率是________.
4.如图的三行三列的方阵中有九个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率为________.
5.某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2017年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:
电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:
购物金额分组
[0.3,0.5)
[0.5,0.6)
[0.6,0.8)
[0.8,0.9]
发放金额
50
100
150
200
(1)求这1 000名购物者获得优惠券金额的平均数;
(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.
6.某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.该公司对近60天,每天揽件数量统计如下表:
包裹件数范围
0~100
101~200
201~300
301~400
401~500
包裹件数(近似处理)
50
150
250
350
450
天数
6
6
30
12
6
(1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?
(新高考)高考数学一轮复习讲练测 第9章 第3讲 圆的方程 (2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习讲练测 第9章 第3讲 圆的方程 (2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲练测第9章第3讲圆的方程原卷版doc、新高考高考数学一轮复习讲练测第9章第3讲圆的方程原卷版pdf、新高考高考数学一轮复习讲练测第9章第3讲圆的方程教师版doc、新高考高考数学一轮复习讲练测第9章第3讲圆的方程教师版pdf等4份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
(新高考)高考数学一轮复习讲练测 第8章 第4讲 直线、平面垂直的判定与性质 (2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习讲练测 第8章 第4讲 直线、平面垂直的判定与性质 (2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲练测第8章第4讲直线平面垂直的判定与性质原卷版doc、新高考高考数学一轮复习讲练测第8章第4讲直线平面垂直的判定与性质原卷版pdf、新高考高考数学一轮复习讲练测第8章第4讲直线平面垂直的判定与性质教师版doc、新高考高考数学一轮复习讲练测第8章第4讲直线平面垂直的判定与性质教师版pdf等4份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
(新高考)高考数学一轮复习讲练测 第7章 第4讲 数列求和 (2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习讲练测 第7章 第4讲 数列求和 (2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲练测第7章第4讲数列求和原卷版doc、新高考高考数学一轮复习讲练测第7章第4讲数列求和原卷版pdf、新高考高考数学一轮复习讲练测第7章第4讲数列求和教师版pdf、新高考高考数学一轮复习讲练测第7章第4讲数列求和教师版doc等4份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。