|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年北京市景山学校高二下学期期中数学试题含答案
    立即下载
    加入资料篮
    2022-2023学年北京市景山学校高二下学期期中数学试题含答案01
    2022-2023学年北京市景山学校高二下学期期中数学试题含答案02
    2022-2023学年北京市景山学校高二下学期期中数学试题含答案03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年北京市景山学校高二下学期期中数学试题含答案

    展开
    这是一份2022-2023学年北京市景山学校高二下学期期中数学试题含答案,共16页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2022-2023学年北京市景山学校高二下学期期中数学试题

     

    一、单选题

    1.已知数列为等差数列,,那么数列的通项公式为(    

    A B C D

    【答案】A

    【分析】设数列的首项为,公差为,列方程组求出即得解.

    【详解】解:设数列的首项为,公差为

    由题得,所以.

    所以数列的通项为.

    故选:A

    2.一次演出,原计划要排个节目,因临时有变化,拟再添加个小品节目,若保持原有个节目的相对顺序不变,则这个节目不同的排列方法有(    

    A B C D

    【答案】C

    【分析】分两个节目放在相邻的位置,和两个节目不相邻两种情况讨论,结合插空法即可得解.

    【详解】当两个节目放在相邻的位置,有种结果,

    当两个节目不相邻,从原来形成的五个空中选两个空排列,共有种结果,

    根据分类计数原理知共有种结果,

    故选:C

    3.下列函数的求导运算中,错误的是(    

    A B

    C D

    【答案】C

    【分析】根据求导法则依次计算得到ACD正确,B错误,得到答案.

    【详解】对选项A,正确;

    对选项B,正确;

    对选项C,错误;

    对选项D,正确.

    故选:C

    4展开式中的系数为(    

    A120 B C160 D

    【答案】D

    【分析】先求出二项式展开式的通项公式,再令的次数为3,求出,从而可求出的系数

    【详解】展开式的通项为,令,得的系数为.

    故选:D

    5.设aR,函数的导函数是,若是偶函数,则曲线在原点处的切线方程为

    A B C D

    【答案】A

    【详解】本题考查导数的运算,导数的几何意义,函数的奇偶性.

    是偶函数,,即

    恒成立,即恒成立,所以

    则曲线在原点处的切线方程为故选A

    6.已知数列是各项均为正数的等比数列,是它的前项和,若,且,则    

    A128 B127 C126 D125

    【答案】C

    【分析】根据等比数列的知识求得数列的首项和公比,从而求得.

    【详解】设等比数列的公比为,且

    所以,即

    故选:C

    7.在个数中任取个数,将其组成无重复数字的四位数,则能被整除,且比大的数共有(    

    A B C D

    【答案】C

    【分析】由题意,可分千位数为,百位数为;千位数为,百位数为;千位数为,百位数为;千位数为;千位数为五种情况分析,结合排列数与组合数的公式,即可求解.

    【详解】若这个数的千位数为,百位数为,则这个数可以是,共个,

    若这个数的千位数为,百位数为,则这个数的个位只能是

    满足条件的数共有个,

    若这个数的千位数为,百位数为,则满足条件的数共有个,

    若这个数的千位数为,这个数的个位只能是,则满足条件的数共有个,

    若这个数的千位数为,则满足条件的数共有个,

    根据分类计数原理,可得满足条件的数共有个.

    故选:C

    8.已知上可导函数的图象如图所示,则不等式的解集为(    

    A B

    C D

    【答案】A

    【分析】由函数的图象确定导函数的符号,再求解不等式即可

    【详解】由函数的图象可得,

    时,

    时,

    可得,

    解得

    所以不等式的解集为

    故选:A

    9.等差数列的前项和为.已知.,则数列的(    

    A.最小项为 B.最大项为 C.最小项为 D.最大项为

    【答案】C

    【分析】根据题意求得等差数列的通项公式和前项和,得到,结合,可排除AD,再求得数列的单调性,得到B不正确,C正确.

    【详解】由题意,设等差数列的公差为

    因为,可得

    所以

    ,可得

    所以,可排除AD

    因为,所以

    所以在区间上都是单调递增函数,

    即当时,数列为递增数列,

    时,数列也为递增数列,

    其中

    例如当时,可得,所以B不正确,C正确.

    故选:C.

    【点睛】数列与函数、不等式综合问题的求解策略:

    1、已知数列的条件,解决函数问题,解决此类问题一把要利用数列的通项公式,前项和公式,求和方法等对于式子化简变形,注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性;

    2、解决数列与不等式的综合问题时,若是证明题中,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等,若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.

    10.关于函数,下列判断不正确的是(    

    A的极小值点

    B.函数有且只有个零点

    C.存在正实数,使得恒成立

    D.对任意两个正实数,且,若,则

    【答案】C

    【分析】由导数求极值最值可知A正确,由函数单调性和零点存在性定理可知B正确,参变分离可得,令,利用导数说明函数的单调性,即可判断C,构造,利用导数判断单调性可知D正确.

    【详解】函数的定义域为

    时,单调递减;当时,单调递增,

    所以的极小值点,故A正确;

    因为,所以

    所以上单调递减,

    所以,使得

    即函数有且只有个零点,故B正确;

    ,即,则

    ,则

    ,则

    时,单调递增,

    时,单调递减,

    所以,所以

    所以上单调递减,函数无最小值,且当

    所以不存在正实数,使得恒成立,故C错误;

    要证,即证

    不妨设,由

    上单调递减,

    所以

    所以,即

    又因为

    又因为上单调递增,

    所以有,即,故D正确.

    故选:C

    【点睛】思路点睛:借助导数研究函数的极值情况,构造新函数研究函数的零点问题以及参数取值范围;可以将自变量的大小比较通过构造新函数,通过单调性转化为函数值的大小比较,从而得到自变量间的关系.

     

    二、填空题

    11.函数的单调增区间为     

    【答案】/

    【分析】利用导数求出函数的单调增区间作答.

    【详解】函数的定义域为,求导得:

    ,即,解得

    所以函数的单调增区间为.

    故答案为:

     

    三、双空题

    12.若展开式中的所有二项式系数和为512,则     ;该展开式中的系数为        (结果用数字表示).

    【答案】     9     -84

    【分析】由二项式系数和为,即可求解的值,利用通项公式即可求得展开式中的系数.

    【详解】由已知可得,解得

    的展开式的通项为

    ,解得

    展开式中的系数为

    故答案为:9

    13.已知数列的前项和为,点在直线上,则数列的首项                    ,数列的通项公式                   

    【答案】     2    

    【分析】由点在直线上,可得,即可得,两式相减得,从而得数列是等比数列,首项为2,公比为3,即可得通项公式.

    【详解】解:因为点在直线上,

    时,,解得

    时,有

    两式相减得

    所以数列是等比数列,首项为2,公比为3

    因此有.

    故答案为:

     

    四、填空题

    14.当时,函数有两个极值点,则实数m的取值范围           .

    【答案】

    【分析】函数有两个极值点转化为方程有两个不同的实数根,等价于有两个不同的交点,构造函数,即可求出结果.

    【详解】有两个极值点,

    所以有两个不同的实数根,

    有两个不同的实数根,

    等价于有两个不同的交点,

    单调递减,

    单调递增,

    所以

    所以要有两个不同的交点,只需

    故答案为:

    【点睛】方法点睛:含参方程有根的问题转化为函数图像的交点问题,数形结合,是常用的方法.本题考查了运算求解能力和数形结合思想,属于一般题目.

    15.数列中的所有项排成如下数阵:

    已知从第二行开始每一行比上一行多两项,第一列数成等差数列,且,从第二行起,每一行中的数按从左到右的顺序均构成以为公比的等比数列.

    在第列;

    以上正确结论的序号是       

    【答案】①③④

    【分析】根据已知条件,按照行和列的顺序分别推理,可判断可利用行和列的通项,判断单调性,求解出对应的最大最小值,比较即可判断,利用等差等比的通项公式推导可判断.

    【详解】解:对第一列数成等差数列,且

    ,故正确;

    第一行共有项,第二行共有项,第三行共有项,,第行共有项,

    所以前一行共有项,前二行共有项,前三行共有项,,前行共有项,

    行共有项,而

    位于第列,错误;

    第一列数所组成的等差数列第行的第一项为:

    且每一行中的数按从左到右的顺序均构成以为公比的等比数列,

    行的数构成以为首项,公比为的等比数列,

    正确;

    第一列数所组成的等差数列第行的第一项为:

    ,令

    时,单调递减,又

    ,在上单调递增,

    成立,正确.

    故答案为:

    【点睛】关键点定睛:解题的关键点是类比推理,数阵行、列的规律总结、类比出等差、等比数列及项数.

     

    五、解答题

    16.已知数列为等差数列,且.

    (1)求数列的通项公式;

    (2)若等比数列满足,求数列的前项和.

    【答案】(1)

    (2)

     

    【分析】1)由得出数列的通项公式;

    2)先由得出公比,再由求和公式计算即可.

    【详解】1)因为,所以,解得.

    即数列的通项公式为.

    2)设公比为,因为,所以,所以数列的前项和为.

    17.已知是函数的一个极值点.

    (1)求实数的值;

    (2)求函数在区间上的最大值和最小值.

    【答案】(1)3

    (2)

     

    【分析】1)先求出函数的导数,根据极值点可得导数的零点,从而可求实数的值;

    2)由(1)可得函数的单调性,从而可求最值.

    【详解】1

    的一个极值点,.

    此时

    ,解剧

    ,解得

    的极值点,故.

    2)由(1)可得上单调递增,在上单调递减,

    上为增函数,在上为减函数,

    .

    .

    18名男生和名女生(包含甲、乙)站成一排表演节目.

    (1)若这名女生不能相邻,有多少种不同的排法?

    (2)甲乙必须相邻,有多少种不同的排法?

    (3)若甲不能站在左端,乙不能站在右端,有多少种不同的排法?

    【答案】(1)2880

    (2)10080

    (3)30960

     

    【分析】1)先排名男生,再将名女生插入名男生产生的个空中,利用插空法求解即可;(2)利用捆绑法求解即可;(3)分甲站在右端和甲不站在右端两种情况,求解即可.

    【详解】1)要使这名女生不相邻,可以先排名男生,

    再将名女生插入名男生产生的个空中,

    所以这名女生不相邻的排法有种.

    2)利用捆绑法,把甲和乙捆在一起,看作一个人,

    则不同的排法有种;

    3甲站在右端,其余人全排列,有种排法.

    甲不站在右端有种排法,乙有种排法,其余人全排,有种排法.

    故一共有种排法.

    19.已知函数

    (1)求曲线在点处的切线方程;

    (2),证明:上单调递增;

    (3)判断的大小关系,并直接写出结论.

    【答案】(1)

    (2)证明见解析

    (3)

     

    【分析】1)由题意得,求出,即可得出答案;

    2)求导,利用导数的正负即可确定函数的单调性,即可得出答案;

    3)构造函数,利用导数确定单调性,结合(2)的结论即可求解.

    【详解】1,所以

    故曲线在点处的切线方程为

    2)由题意得

    所以,在恒成立

    上单调递增.

    3

    证明如下:设,则

    由(2)知:上单调递增,则

    所以,即上单调递增,故,即

    20.已知函数

    (1)

    单调区间;

    试问有极大值还是极小值?并求出该极值.

    (2)上恰有两个零点,求的取值范围.

    【答案】(1)①上单调递增,在上单调递减;有极大值,无极小值

    (2)

     

    【分析】1求导,然后解关于导函数的不等式,求出函数的单调区间;根据函数的单调性即可求解极值问题.

    2)由题意,转化为方程有两个解,即直线与函数有两个交点,构造,求导得到其单调性,数形结合,即可求出的取值范围.

    【详解】1时,

    ,得,令,得

    上单调递增,在上单调递减;

    结合时,函数有极大值,无极小值.

    2)因为函数上恰有两个零点,

    所以方程上有两个解,

    上有两个解,

    则直线与函数有两个交点,

    ,得,令,得

    所以上单调递增,在上单调递减,

    ,又

    所以当时,,函数单调递增,

    时,,函数单调递减,

    如图,

        

    由图知,要使直线与函数

    有两个交点,则

    所以函数上恰有两个零点时,的取值范围为

    【点睛】方法点睛:利用导数解决函数零点问题的方法:

    1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;

    2)构造新函数法:将问题转化为研究两函数图象的交点问题;

    3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数的图象的交点问题.

    21.若数列满足:对任意,均有成立,则称数列数列

    (1)直接判断下面三个数列是否是数列

    (2)数列满足,证明:数列是等差数列的充分不必要条件是

    (3)的取值范围,使得存在非零实数,对任意正整数,数列恒为数列

    【答案】(1)①②③均为数列

    (2)证明见解析

    (3)

     

    【分析】1)根据数列的定义直接判断这三个数列即可;

    2)根据条件可知数列是以为公差的等差数列,充分性成立,再由数列数列,可证不必要性;

    3)当时,易知数列数列;当时,条件等价于对任意的正整数,然后分四种情况讨论即可.

    【详解】1均为数列

    2)充分性:对,由条件,

    时,

    数列是以为公差的等差数列.

    不必要性:当是常数列,且时,数列数列,但

    3)当时,取,则数列数列

    时,条件等价于对任意的正整数

    时,取,则成立;

    时,取,则成立;

    时,取,则当偶数时,

    是奇数时,,均成立;

    时,下证:存在正整数,使得,即

    事实上,当时,取奇数且,则成立;

    时,取是偶数且,则成立.

    综上所述,的范围为

     

    相关试卷

    2024届北京市景山学校高三上学期期中数学试题含答案: 这是一份2024届北京市景山学校高三上学期期中数学试题含答案,共15页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2022-2023学年北京市石景山区高二下学期期末考试数学试题含答案: 这是一份2022-2023学年北京市石景山区高二下学期期末考试数学试题含答案,共17页。

    2022-2023学年北京市海淀区清华大学附属中学永丰学校高二下学期期中调研数学试题含答案: 这是一份2022-2023学年北京市海淀区清华大学附属中学永丰学校高二下学期期中调研数学试题含答案,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023学年北京市景山学校高二下学期期中数学试题含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map