所属成套资源:中考数学二轮专项复习 (含答案)
中考数学二轮专项复习——反比例函数提升卷(含答案)
展开这是一份中考数学二轮专项复习——反比例函数提升卷(含答案),共21页。试卷主要包含了如图,已知点A,B在双曲线y=,如图所示,点P,,AC,BD交于点E等内容,欢迎下载使用。
中考数学二轮专项复习——反比例函数提升卷
1.(•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是( )
A. B.
C. D.
2.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是( )
A. B. C. D.
3.双曲线与直线交于A、B两点,要使反比例函数的值小于一次函数的值,则x的取值范围是( )
A.x>3 B.x<﹣2
C.﹣2<x<0或x>3 D.x<﹣2或0<x<3
4.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣
5.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.若△ABP的面积为4,则k的值为( ).
A.16 B.8 C.4 D.24
6.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )
A.y= B.y= C.y= D.y=
二、填空题
7.在同一坐标系中,正比例函数y=-3x与反比例函数的图象有______个交点.
8.(山西)如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(-4,0),点D的坐标为(-1,4),反比例函数的图象恰好经过点C,则k的值为 .
9.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20W时,电流强度I=0.25A.则
(1)电压U=______V; (2)I与R的函数关系式为______;
(3)当R=12.5W时的电流强度I=______A;
(4)当I=0.5A时,电阻R=______W.
10.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为 .
11.如图所示,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC丄x轴于点C,交C2于点A,PD丄y轴于点D,交C2于点B,则四边形PAOB的面积为_______.
12.(遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为 .(填一般式)
三、 解答题
13.已知直线y=-3x与双曲线y=交于点P (-1,n).
(1)求m的值;
(2)若点A (x1,y1),B(x2,y2)在双曲线y=上,且x1<x2<0,试比较y1,y2的大小.
14.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数y=的图象交于点C,连接CO,过C作CD⊥x轴于D,直线AB的解析式为y=﹣x+2,CD=3.
(1)求tan∠ABO的值和反比例函数的解析式;
(2)根据图象直接写0<x+2<﹣的自变量x的范围.
15.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)请直接写出满足kx+b>的x的取值范围;
(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
16.如图,反比例函数y=的图象经过点A(-1,4),直线y=-x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.
(1)求k的值;
(2)当b=-2时,求△OCD的面积;
(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.
17.如图,在平面直角坐标系xOy中,函数y=x+b的图象与函数y=(x>0)的图象相交于点A(1,6),并与x轴交于点B.点C是线段AB上一点,△OBC与△OBA的面积比为2:3.
(1)k= ,b= ;
(2)求点C的坐标;
(3)若将△OBC绕点O顺时针旋转,得到△OB'C',其中B的对应点是B',C的对应点是C',当点C'落在x轴正半轴上,判断点B是否落在函数y=(x>0)的图象上,并说明理由.
18.(•河池中考)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.
(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;
(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;
(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.
参考答案及解析
1.(•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是( )
A. B.
C. D.
解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.
a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;
故选:D.
2.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是( )
A. B. C. D.
解:∵当R=20,I=11时,
∴电压=20×11=220,
∴.
故选:A.
3.双曲线与直线交于A、B两点,要使反比例函数的值小于一次函数的值,则x的取值范围是( )
A.x>3 B.x<﹣2
C.﹣2<x<0或x>3 D.x<﹣2或0<x<3
解:由题意得:反比例函数的图象位于一次函数图象的下部的部分,
对应的自变量的取值范围是:﹣2<x<0或x>3.
故选:C.
4.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为( )
A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣
【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.
【解析】过点C作CD⊥x轴于D,
设菱形的边长为a,
在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,
则C(﹣a,a),
点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),
则,
解得.
故反比例函数解析式为y=﹣.
故选:B.
5.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.若△ABP的面积为4,则k的值为( ).
A.16 B.8 C.4 D.24
【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.
【解答】∵△ABP的面积为•BP•AP=4,
∴BP•AP=8,
∵P是AC的中点,
∴A点的纵坐标是B点纵坐标的2倍,
又∵点A、B都在双曲线y=(x>0)上,
∴B点的横坐标是A点横坐标的2倍,
∴OC=DP=BP,
∴k=OC•AC=BP•2AP=16.
故选A.
6.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )
A.y= B.y= C.y= D.y=
解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,
则圆的面积为10π×4=40π.
因为P(3a,a)在第一象限,则a>0,3a>0,
根据勾股定理,OP==a.
于是π=40π,a=±2,(负值舍去),故a=2.
P点坐标为(6,2).
将P(6,2)代入y=,
得:k=6×2=12.
反比例函数解析式为:y=.
故选:D.
二、填空题
7.在同一坐标系中,正比例函数y=-3x与反比例函数的图象有______个交点.
答案:0.
8.(山西)如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(-4,0),点D的坐标为(-1,4),反比例函数的图象恰好经过点C,则k的值为 .
【解析】过点D作DE⊥AB于点E,则AD=5,∵四边形ABCD为菱形,∴CD=5
∴C(4,4),将C代入得:,∴
9.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20W时,电流强度I=0.25A.则
(1)电压U=______V; (2)I与R的函数关系式为______;
(3)当R=12.5W时的电流强度I=______A;
(4)当I=0.5A时,电阻R=______W.
答案:(1)5; (2); (3)0.4; (4)10.
10.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为 .
解:由于P点在y=上,则S□PCOD=2,A、B两点在y=上,
则S△DBO=S△ACO=×1=.
∴S四边形PAOB=S□PCOD﹣S△DBO﹣S△ACO=2﹣﹣=1.
∴四边形PAOB的面积为1.
故答案为:1.
11.如图所示,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,PC丄x轴于点C,交C2于点A,PD丄y轴于点D,交C2于点B,则四边形PAOB的面积为_______.
答案:4
解析 ∵PC丄x轴,PD丄y轴,
∴S矩形PCOD = 7,,
∴四边形PAOB的面积=7 -2× = 4.
12.(遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为 .(填一般式)
【解析】点C(0,3),反比例函数y=经过点B,则点B(4,3),
则OC=3,OA=4,∴AC=5,设OG=PG=x,则GA=4﹣x,PA=AC﹣CP=AC﹣OC=5﹣3=2,
由勾股定理得:(4﹣x)2=4+x2,解得:x=,故点G(,0),
将点C、G、A坐标代入二次函数表达式得:,解得:,
故答案为:y=x2﹣x+3.
四、 解答题
13.已知直线y=-3x与双曲线y=交于点P (-1,n).
(1)求m的值;
(2)若点A (x1,y1),B(x2,y2)在双曲线y=上,且x1<x2<0,试比较y1,y2的大小.
解:(1)∵点P(-1,n)在直线y=-3x上,∴n=3,∴点P的坐标为(-1,3).∵点P(-1,3)在双曲线y=上,∴m=2;
(2)由(1)得,双曲线的解析式为y=-.在第二象限内,y随x的增大而增大,∴当x1<x2<0时,y1<y2.
14.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数y=的图象交于点C,连接CO,过C作CD⊥x轴于D,直线AB的解析式为y=﹣x+2,CD=3.
(1)求tan∠ABO的值和反比例函数的解析式;
(2)根据图象直接写0<x+2<﹣的自变量x的范围.
解:(1)在直线ABy=﹣x+2中,令y=0,解得x=4;令x=0,则y=2,
∴A(0,2),B(4,0),
∴OB=4,OA=2,
把y=3代入y=﹣x+2,求得x=﹣2,
∴C(﹣2,3),
∴DB=2+4=6
∵CD⊥x轴,
∴tan∠ABO===,
将C(﹣2,3)代入y=,得k=﹣2×3=﹣6
∴反比例函数解析式为y=﹣;
(2)由图象可知,0<x+2<﹣的自变量x的范围是﹣2<x<0.
15.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).
(1)求一次函数与反比例函数的解析式;
(2)请直接写出满足kx+b>的x的取值范围;
(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.
解:∵AD⊥x轴,
∴∠ADO=90°,
在Rt△AOD中,AD=4,
∴sin∠AOD===,
∴OA=5,根据勾股定理得,OD=3,
∵点A在第二象限,
∴A(﹣3,4),
∵点A在反比例函数y=的图象上,
∴m=﹣3×4=﹣12,
∴反比例函数解析式为y=﹣,
∵点B(n,﹣2)在反比例函数y=﹣上,
∴﹣2n=﹣12,
∴n=6,
∴B(6,﹣2),
∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,
∴,∴,
∴一次函数的解析式为y=﹣x+1;
(2)由图象知,满足kx+b>的x的取值范围为x<﹣3或0<x<6;
(3)设点E的坐标为(0,a),
∵A(﹣3,4),O(0,0),
∴OE=|a|,OA=5,AE=,
∵△AOE是等腰三角形,
∴①当OA=OE时,|a|=5,
∴a=±5,
∴P(0,5)或(0,﹣5),
②当OA=AE时,5=,
∴a=8或a=0(舍),
∴P(0,8),
③当OE=AE时,|a|=,
∴a=,
∴P(0,),
即:满足条件的点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,).
16.如图,反比例函数y=的图象经过点A(-1,4),直线y=-x+b(b≠0)与双曲线y=在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.
(1)求k的值;
(2)当b=-2时,求△OCD的面积;
(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.
解:(1)∵反比例函数y=的图象经过点A(-1,4),∴k=-1×4=-4;(2)当b=-2时,直线的解析式为y=-x-2.令y=0,则-x-2=0,解得x=-2,∴C(-2,0).令当x=0,则y=-x-2=-2,∴D(0,-2).∴S△OCD=×2×2=2;
(3)存在.令y=0,则-x+b=0,解得x=b,则C(b,0).∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等.而点Q在第四象限,∴点Q的横坐标为-b.当x=-b时,y=-x+b=2b,则Q(-b,2b),∵点Q在反比例函数y=-的图象上,∴-b•2b=-4,解得b=-或b=(舍去),∴b的值为-.
17.如图,在平面直角坐标系xOy中,函数y=x+b的图象与函数y=(x>0)的图象相交于点A(1,6),并与x轴交于点B.点C是线段AB上一点,△OBC与△OBA的面积比为2:3.
(1)k= 6 ,b= 5 ;
(2)求点C的坐标;
(3)若将△OBC绕点O顺时针旋转,得到△OB'C',其中B的对应点是B',C的对应点是C',当点C'落在x轴正半轴上,判断点B是否落在函数y=(x>0)的图象上,并说明理由.
解:(1)将A(1,6)代入y=x+b,
得,6=1+b,
∴b=5,
将A(1,6)代入y=,
得,6=,
∴k=6,
故答案为:6,5;
(2)如图1,过点C作CM⊥x轴,垂足为M,过点A作AN⊥x轴,垂足为N,
∵△OBC与△OBA的面积比为2:3,
∴=,
又∵点A的坐标为(1,6),
∴AN=6,
∴CM=4,即点C的纵坐标为4,
把y=4代入y=x+5中,
得,x=﹣1,
∴C(﹣1,4);
(3)由题意可知,OC'=OC===,
如图2,过点B'作B'F⊥x轴,垂足为F,
∵S△OBC=S△OB'C′,
由一次函数y=x+5可知B(﹣5,0),
∴OB•CE=OC'•B'F,
即5×4=B'F,
∴B'F=,
在Rt△OB'F中,
∵OF===,
∴B'的坐标为(,),
∵×≠6,
∴点B'不在函数y=的图象上.
18.(•河池中考)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.
(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;
(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;
(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.
解:(1)如图1中,
∵四边形ABCD是矩形,
∴DE=EB,
∵B(6,0),D(0,8),
∴E(3,4),
∵双曲线y=过点E,
∴k1=12.
∴反比例函数的解析式为y=.
(2)如图2中,
∵点M,N在反比例函数的图象上,
∴DN•AD=BM•AB,
∵BC=AD,AB=CD,
∴DN•BC=BM•CD,
∴=,
∴=,
∴=,
∵∠MCN=∠BCD,
∴△MCN∽△BCD,
∴∠CNM=∠CDB,
∴MN∥BD,
∴△CMN∽△CBD.
∵B(6,0),D(0,8),
∴直线BD的解析式为y=﹣x+8,
∵C,C′关于MN对称,
∴CC′⊥MN,
∴CC′⊥BD,
∵C(6,8),
∴直线CC′的解析式为y=x+,
∴C′(0,).
(3)如图3中,
①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,
∴5m=4(m+3),
∴m=12.
②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,
∴8m=4(m+3),
∴m=3.
③显然PA≠PE,若相等,则PE∥x轴,显然不可能.
综上所述,满足条件的m的值为3或12.
相关试卷
这是一份中考数学二轮专项复习——反比例函数综合问题(含答案),共20页。试卷主要包含了反比例函数的概念,反比例函数的图象和性质,解答题等内容,欢迎下载使用。
这是一份中考数学二轮专项复习——反比例函数综合 能力提升卷(含答案),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合 能力提升卷(含解析答案)