|试卷下载
搜索
    上传资料 赚现金
    2023届陕西省安康市石泉县江南中学高三下学期2月月考数学(文)试题含解析
    立即下载
    加入资料篮
    2023届陕西省安康市石泉县江南中学高三下学期2月月考数学(文)试题含解析01
    2023届陕西省安康市石泉县江南中学高三下学期2月月考数学(文)试题含解析02
    2023届陕西省安康市石泉县江南中学高三下学期2月月考数学(文)试题含解析03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届陕西省安康市石泉县江南中学高三下学期2月月考数学(文)试题含解析

    展开
    这是一份2023届陕西省安康市石泉县江南中学高三下学期2月月考数学(文)试题含解析,共16页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2023届陕西省安康市石泉县江南中学高三下学期2月月考数学(文)试题

     

    一、单选题

    1.已知集合,则    

    A B C D

    【答案】C

    【分析】先解不等式求出两集合,再求两集合的交集

    【详解】,得,解得

    所以

    ,得,所以

    所以

    故选:C

    2.设复数,其中是实数,是虚数单位,若的实部为1,则    

    A B C2 D

    【答案】D

    【分析】,再根据复数运算与相等的性质可得,进而可得.

    【详解】的实部为1,可设,故,即,故,则,解得,故,则.

    故选:D

    3.已知椭圆经过点,且焦点分别为,则椭圆的离心率为(    

    A B C D

    【答案】D

    【分析】根据已知条件求得,从而求得椭圆的离心率.

    【详解】由于焦点

    所以焦点在轴上,且

    由于椭圆经过点,所以

    所以

    所以椭圆的离心率为.

    故选:D

    4.若的平均数为3,方差为4,则的(    

    A.平均数为1,方差为2 B.平均数为1,方差为1

    C.平均数为,方差为2 D.平均数为,方差为1

    【答案】B

    【分析】根据平均数与方差的性质求解即可.

    【详解】的平均数为,方差为

    的平均数为,方差为

    ,解得.

    故选:B

    5.阅读如图所示的程序框图,运行相应的程序,若输出的,则判断框中填写的可以是(    

        

    A B C D

    【答案】B

    【分析】根据程序框图,写出每次运行的结果即可求解.

    【详解】模拟执行程序框图,可得满足条件;

    ,满足条件;

    ,满足条件,

    ,满足条件,

    由题意,此时应该不满足条件,退出循环,输出的值为.

    改判断框中填写的内容可以是.

    故选:B

    6.若,则    

    A B C D

    【答案】A

    【分析】根据题意,由条件可得,然后代入计算,即可得到结果.

    【详解】因为,且

    ,解得,则.

    故选:A

    7.已知双曲线的左焦点为,右焦点为,点在双曲线的一条渐近线上,为坐标原点.,则的面积为(    

    A B1 C D

    【答案】C

    【分析】由题意可知点在线段的中垂线上,由此可求出点的横坐标,再根据渐近线方程,即可求出点的纵坐标,根据三角形面积公式即可求出结果.

    【详解】因为双曲线,可知右焦点为

    所以点在线段的中垂线上,所以点的横坐标为

    又双曲线的渐近线方程为

    所以点的纵坐标为,即的高为

    所以的面积为.

    故选:C.

      

    8.中国是全球最大的光伏制造和应用国,平准化度电成本(LCOE)也称度电成本,是一项用于分析各种发电技术成本的主要指标,其中光伏发电系统与储能设备的等年值系数对计算度电成本具有重要影响.等年值系数和设备寿命周期具有如下函数关系为折现率,寿命周期为年的设备的等年值系数约为,则对于寿命周期约为年的光伏-储能微电网系统,其等年值系数约为(    

    A B C D

    【答案】D

    【分析】由已知可得出,解出,然后将代入计算即可得解.

    【详解】由已知可得,解得

    时,则.

    故选:D.

    9.如图,在三棱锥中,已知,平面平面,三棱锥的体积为,若点都在球的球面上,则球的表面积为(    

      

    A B C D

    【答案】B

    【分析】的中点,连接,则可证得为三棱锥外接球的球心,然后由已知的面面垂直和棱锥的体积可求出外接球的半径,从而可求出外接球的表面积.

    【详解】的中点,连接

    因为,所以

    所以

    所以为三棱锥外接球的球心,

    ,则

    因为,所以为等腰直角三角形,且

    所以

    因为平面平面,平面平面平面

    所以平面

    因为,所以

    所以,解得

    所以球的表面积为

    故选:B

      

    10.钝角的内角的对边分别是,已知,且,则的周长为(    

    A9 B C6 D9

    【答案】A

    【分析】由题知,再分为钝角和为钝角两种情况讨论求解即可.

    【详解】解:因为

    所以,根据正弦定理边化角得

    因为

    所以,即

    所以,当为钝角时,,即,解得,周长为

    为钝角时,,即,解得,此时与为钝角时矛盾,故不成立;

    综上,的周长为.

    故选:A

    11.已知抛物线的焦点到其准线的距离为2,过焦点的直线与抛物线交于两点,则的最小值为(    

    A B C D9

    【答案】A

    【分析】根据抛物线的定义求得,进而求得抛物线方程.设出直线的方程,并与抛物线方程联立,化简写出根与系数关系,结合基本不等式求得的最小值.

    【详解】因为抛物线的焦点到其准线的距离为2

    所以,抛物线的方程为.设直线的方程为

    将此方程代入,整理得

    ,()则

    所以

    当且仅当,即时等号成立.

    故选:A

    12.若, 函数的图象恒在函数的图象上方(无公共点), 则实数的取值范围是(    

    A B C D

    【答案】A

    【分析】由题知,对于恒成立,等价转化为对于恒成立,构造函数,根据单调性得,分离参数得对于恒成立,再构造函数,对求导,借助单调性求最小值,继而得解.

    【详解】由题知,函数的图象恒在函数的图象上方,

    所以对于恒成立,

    ,即对于恒成立,

    ,则

    上恒成立,

    所以上单调递增,

    所以,所以对于恒成立,

    ,则

    所以当时,

    时,

    所以单调递减,在单调递增,

    所以,又.

    故选:A.

    【点睛】方法点睛:本题考查了指对函数同构,常见的指对变形有:

    1

    2

    3

    4

    5

     

    二、填空题

    13.在区间上随机取一个数,则事件发生的概率为         .

    【答案】

    【分析】由题意,求出对应的定义域区间长度,利用长度比求概率.

    【详解】解:,由,得

    ,即时,有

    在区间上随机取一个数,则事件发生的概率为.

    故答案为:.

     

    三、双空题

    14.若是奇函数,则            .

    【答案】          1

    【分析】由奇函数满足求解即可.

    【详解】由题意,,则.

    又奇函数满足,故,解得.

    故答案为:1

     

    四、填空题

    15.已知两点.为坐标原点,点在第一象限,且,设,则        .

    【答案】

    【分析】,根据,得到,然后由求解.

    【详解】因为点在第一象限,设

    又因为

    所以,即

    因为

    所以

    所以

    解得

    故答案为:

    16.已知直线)与双曲线交于两点,轴于点,直线与双曲线的另一个交点为,则      .

    【答案】/

    【分析】利用点差法,能得到的值,则通过就可以推导出,然后就可以推出的值.

    【详解】  

    ,则.

    得,

    .

    .

    故答案为:.

     

    五、解答题

    17.已知数列的前项和为,对任意正整数,都有

    (1)证明:数列为等比数列;

    (2)

    【答案】(1)见解析;

    (2)

     

    【分析】(1)已知条件m1,根据等比数列定义即可证明;

    (2){}为首项是,公比为的等比数列

    【详解】1)由题可知,

    m,则,即,即

    数列为等比数列,首项为2,公比q2

    2)由(1)

    182021年,为降低疫情传播风险,保障经济社会良好运行,各地区鼓励外来务工人员就地过节、过年.某市统计了该市4个地区的外来务工人员数与就地过年的人员数,得到如下的表格:

     

    A

    B

    C

    D

    外来务工人员数/万人

    3

    4

    5

    6

    就地过年的人员数/万人

    2.5

    3

    4

    4.5

    (1)已知可用线性回归模型拟合的关系,求关于的线性回归方程

    (2)假设该市政府对外来务工人员中选择就地过年的人每人发放1000元补贴.若该市区有2万名外来务工人员,根据(1)的结论估计该市政府需要给区选择就地过年的人员发放的补贴总金额;

    参考公式:回归方程中斜率和截距的公式分别为

    【答案】(1)

    (2)(万元)

     

    【分析】1)利用公式求出,得到线性回归方程;

    2)在第一问的基础上,代入求出,从而估计该市政府需给区选择就地过年的人员发放补贴总金额.

    【详解】1

    所以,,则

    关于的线性回归方程为

    2)将代入得:

    估计该市政府需给区选择就地过年的人员发放补贴总金额为(万元).

    19.已知四棱锥的底面是菱形,,平面,点是棱的中点,在棱.

    (1)证明:平面平面.

    (2)试探究在棱何处时使得平面.

    【答案】(1)证明见解析;

    (2)时,平面

     

    【分析】1)根据可得平面,故而平面平面

    2)连接,连接,根据线面平行可得,于是

    【详解】1)证明:,

    又底面的菱形,且点是棱的中点,所以

    ,所以平面.

    平面平面.

    2

    时,平面,证明如下:

    连接,连接.

    因为底面是菱形,且点是棱的中点,所以,

    ,所以

    平面.

    20.司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25.

    (1)完成下面的列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;

     

    开车时使用手机

    开车时不使用手机

    合计

    男性司机人数

     

     

     

    女性司机人数

     

     

     

    合计

     

     

     

    (2)从开车时使用手机的样本中依据性别采取分层抽样抽取了6名司机,再从抽取的6名司机中随机的抽取3名司机了解具体情况,求抽取的3名司机中至少有2名男司机的概率.

    参考公式附:其中.

    参考数据:

    0.15

    0.10

    0.05

    0.025

    0.010

    0.005

    2.072

    2.706

    3.841

    5.024

    6.635

    7.879

    【答案】(1)列联表见解析,有99.5%的把握认为开车时使用手机与司机的性别有关;

    (2).

     

    【分析】1)根据已知条件完善列联表,由卡方公式求出卡方值,比较参照值即可得结论;

    2)由(1)知6名司机中4名男性,2名女性,利用组合计数、古典概型的概率求法求概率即可.

    【详解】1

     

    开车时使用手机

    开车时不使用手机

    合计

    男性司机人数

    40

    15

    55

    女性司机人数

    20

    25

    45

    合计

    60

    40

    100

    所以

    故有99.5%的把握认为开车时使用手机与司机的性别有关.

    2)由(1)知:6名司机中4名男性,2名女性,

    所以6名司机中随机的抽取3名司机中至少有2名男司机的概率为.

    21.设函数

    1)求函数的单调区间;

    2)若函数有两个零点,求正整数的最小值.

    【答案】1)答案见解析;(23.

    【分析】1)对a分类讨论,利用导数讨论单调性;

    2)先判断出,且,定义研究单调性,利用零点存在定理判断出的零点即可求解.

    【详解】:1.

    时,,函数在区间内单调递增,

    所以,函数的单调增区间为,无单调减区间;

    时,由,得;由,得.

    所以,函数的单调增区间为,单调减区间为.   .

    2)由(1)知:如果函数有两个零点,则,且

    ,即:..

    可知在区间内为增函数,且

            

    所以存在

    时,;当时,.

    所以,满足条件的最小正整数

    【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:

    (1)考查导数的几何意义,往往与解析几何、微积分相联系.

    (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.

    (3)利用导数求函数的最值(极值),解决生活中的优化问题.

    (4)考查数形结合思想的应用.

    22.已知椭圆C的方程为,右焦点为,且离心率为

    1)求椭圆C的方程;

    2)设MN是椭圆C上的两点,直线与曲线相切.证明:MNF三点共线的充要条件是

    【答案】1;(2)证明见解析.

    【分析】1)由离心率公式可得,进而可得,即可得解;

    2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证

    充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得,进而可得,即可得解.

    【详解】1)由题意,椭圆半焦距,所以

    ,所以椭圆方程为

    2)由(1)得,曲线为

    当直线的斜率不存在时,直线,不合题意;

    当直线的斜率存在时,设

    必要性:

    MNF三点共线,可设直线

    由直线与曲线相切可得,解得

    联立可得,所以

    所以,

    所以必要性成立;

    充分性:设直线

    由直线与曲线相切可得,所以

    联立可得

    所以

    所以

    化简得,所以

    所以,所以直线

    所以直线过点MNF三点共线,充分性成立;

    所以MNF三点共线的充要条件是

    【点睛】关键点点睛:

    解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.

     

    相关试卷

    陕西省安康市高新中学2024届高三数学(文)上学期10月月考试题(PDF版附答案): 这是一份陕西省安康市高新中学2024届高三数学(文)上学期10月月考试题(PDF版附答案),文件包含专题228相似形章末拔尖卷沪科版原卷版docx、专题228相似形章末拔尖卷沪科版解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    2022-2023学年陕西省安康市石泉县江南中学等校高二下学期期中数学(理)试题含答案: 这是一份2022-2023学年陕西省安康市石泉县江南中学等校高二下学期期中数学(理)试题含答案,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年陕西省安康市石泉县江南中学高二下学期期中数学(文)试题含答案: 这是一份2022-2023学年陕西省安康市石泉县江南中学高二下学期期中数学(文)试题含答案,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map