初三数学三角形的内切圆教案设计
展开初三数学三角形的内切圆教案设计
【】初三数学三角形的内切圆教案设计通过学习使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念。
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.
难点:①难点是接与切的含义,学生容易混淆;②画三角形内切圆,学生不易画好.
2、教学建议
本节内容需要一个课时.
(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;
(2)在教学中,类比三角形外接圆的画图、概念、性质,开展活动式教学.
教学目标:
1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;
2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;
3、激发学生动手、动脑主动参与课堂教学活动.
教学重点:
三角形内切圆的作法和三角形的内心与性质.
教学难点:
三角形内切圆的作法和三角形的内心与性质.
教学活动设计
(一)提出问题
1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?
2、分析、研究问题:
让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.
3、解决问题:
例1 作圆,使它和已知三角形的各边都相切.
引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.
提出以下几个问题进行讨论:
①作圆的关键是什么?
②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?
③这样的点I应在什么位置?
④圆心I确定后半径如何找.
A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.
完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个.
(二)类比联想,学习新知识.
1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
2、类比:
名称
确定方法
图形
性质
外心(三角形外接圆的圆心)
三角形三边中垂线的交点
(1)OA=OB=OC;
(2)外心不一定在三角形的内部.
内心(三角形内切圆的圆心)
三角形三条角平分线的交点
(1)到三边的距离相等;
(2)OA、OB、OC分别平分BAC、ABC、
(3)内心在三角形内部.
3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.
4、概念理解:
引导学生理解三角形的内切圆及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清内与外、接与切的含义.接与切是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做接三角形的边都与圆相切叫做切.
(三)应用与反思
例2 在△ABC中,ABC=50,ACB=75,点O是三角形的内心.
求BOC的度数
分析:要求BOC的度数,只要求出OBC和0CB的度数之和就可,即求l十3的度数.因为O是△ABC的内心,所以OB和OC分别为ABC和BCA的平分线,于是有1十3= (ABC十ACB),再由三角形的内角和定理易求出BOC的度数.
解:(引导学生分析,写出解题过程)
例3 △ABC中,E是内心,A的平分线和△ABC的外接圆相交于点D
求证:DE=DB
分析:从条件想,E是内心,则E在A的平分线上,同时也在ABC的平分线上,考虑连结BE,得出4.
从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.
证明:连结BE.
E是△ABC的内心
又∵2
2
3=5
BED=EBD
DE=DB
练习分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内.
(四)小结
1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知三角形的内切圆?学习时互该注意哪些问题?
2.学生回答的基础上,归纳总结:
(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.
(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.
(3)在学习有关概念时,应注意区别内与外,接与切还应注意连结内心和三角形顶点这一辅助线的添加和应用.
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。(五)作业
要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.
数学北师大版1 圆教学设计: 这是一份数学北师大版<a href="/sx/tb_c102700_t8/?tag_id=27" target="_blank">1 圆教学设计</a>,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
初三数学平均数教案设计: 这是一份初三数学平均数教案设计,共5页。
初三数学函数学图象的性质教案设计: 这是一份初三数学函数学图象的性质教案设计,共4页。教案主要包含了展示活动主题和目标,活动过程等内容,欢迎下载使用。