模型22 瓜豆原理之曲线型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用)
展开
运动轨迹为圆
问题1.如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?
解析:Q点轨迹是一个圆
理由:Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,.
问题2.如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
解析:Q点轨迹是一个圆
理由:∵AP⊥AQ,∴Q点轨迹圆圆心M满足AM⊥AO;
又∵AP:AQ=2:1,∴Q点轨迹圆圆心M满足AO:AM=2:1.
即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.
模型总结
条件:两个定量
(1)主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
(2)主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
结论
(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;
(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.
【例1】.如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则的面积的最大值为
变式训练
【变式1-1】.如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为( )
A. B.2 C.2 D.4
【变式1-2】.如图,已知正方形ABCD的边长为4,以点C为圆心,2为半径作圆,P是⊙C上的任意一点,将点P绕点D按逆时针方向旋转90°,得到点Q,连接BQ,则BQ的最大值是( )
A.6 B. C. D.
【例2】.四边形ABCD是边长为4的正方形,点P是平面内一点.且满足BP⊥PC,现将点P绕点D顺时针旋转90度,则CQ的最大值= .
变式训练
【变式2-1】.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段
PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是 .
【变式2-2】.如图,AB=4,O为AB的中点,⊙O的半径为1,点P是⊙O上一动点,以PB为直角边的等腰直角三角形PBC(点P、B、C按逆时针方向排列),则线段AC的长的取值范围为 .
1.如图,点A是双曲线y=在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为( )
A.y=﹣x B.y=﹣x C.y=﹣ D.y=﹣
2.在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心,2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最大值为( )
A.7 B.3.5 C.4.5 D.3
3.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )
A.5 B.6 C.7 D.8
4.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )
A. B. C. D.
5.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是( )
A. B.3 C.﹣1 D.﹣1
6.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=2,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为( )
A.1 B. C. D.2
7.如图,⊙O的直径AB=4,P为⊙O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是 .
8.如图,已知点A是第一象限内的一个定点,若点P是以O为圆心,2个单位长为半径的圆上的一个动点,连接AP,以AP为边向AP右侧作等边三角形APB.当点P在⊙O上运动一周时,点B运动的路径长是 .
9.如图,⊙O的半径为3,AB为圆上一动弦,以AB为边作正方形ABCD,求OD的最大值 .
10.如图,在平面直角坐标系中,B(0,4),A(3,0),⊙A的半径为2,P为⊙A上任意一点,C是BP的中点,则OC的最大值是 .
11.如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为 cm.
12.如图,点O为坐标原点,⊙O的半径为1,点A(2,0),动点B在⊙O上,连接AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值与最小值.
13.如图,点O在线段AB上,OA=1,OB=2,以点O为圆心、OA长为半径的圆为⊙O,在⊙O上取动点P,以PB为边作△PBC,使∠PBC=90°,tan∠PCB=,P、B、C三点为逆时针顺序,连接AC,求AC的取值范围.
14.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.
(1)求证:AE与⊙O相切;
(2)连接BD,若ED:DO=3:1,OA=9,求AE的长;
(3)若AB=10,AC=8,点F是⊙O任意一点,点M是弦AF的中点,当点F在⊙O上运动一周,则点M运动的路径长为 .
15.若AC=4,以点C为圆心,2为半径作圆,点P为该圆上的动点,连接AP.
(1)如图1,取点B,使△ABC为等腰直角三角形,∠BAC=90°,将点P绕点A顺时针旋转90°得到AP′.
①点P'的轨迹是 (填“线段”或者“圆”);
②CP′的最小值是 ;
(2)如图2,以AP为边作等边△APQ(点A、P、Q按照顺时针方向排列),在点P运动过程中,求CQ的最大值.
(3)如图3,将点A绕点P逆时针旋转90°,得到点M,连接PM,则CM的最小值为 .
16.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A、C两点,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为B.
(1)求抛物线解析式;
(2)若点M为x轴下方抛物线上一动点,当点M运动到某一位置时,△ABM的面积等于△ABC面积的,求此时点M的坐标;
(3)如图2,以B为圆心,2为半径的⊙B与x轴交于E、F两点(F在E右侧),若P点是⊙B上一动点,连接PA,以PA为腰作等腰Rt△PAD,使∠PAD=90°(P、A、D三点为逆时针顺序),连接FD.求FD长度的取值范围.
模型46 勾股定理之蚂蚁行程、弦图模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型46 勾股定理之蚂蚁行程、弦图模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型46勾股定理之蚂蚁行程弦图模型原卷版docx、模型46勾股定理之蚂蚁行程弦图模型解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
模型45 折叠变换模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型45 折叠变换模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型45折叠变换模型原卷版docx、模型45折叠变换模型解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
模型30 探照灯模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用): 这是一份模型30 探照灯模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型30探照灯模型原卷版docx、模型30探照灯模型解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。