专题24.2 垂径定理的应用(重点题专项讲练)-2022-2023学年九年级数学上册从重点到压轴(人教版)(解析+原卷)
展开【典例1】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.
(1)求拱桥的半径;
(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.
【思路点拨】
(1)根据垂径定理和勾股定理求解;
(2)连接ON,OB,根据勾股定理即可得到结论.
【解题过程】
解:(1)如图,连接ON,OB.
∵OC⊥AB,
∴D为AB中点,
∵AB=12m,
∴BD=12AB=6m.
又∵CD=4m,
设OB=OC=ON=r,则OD=(r﹣4)m.
在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,
解得r=6.5.
∴拱桥的半径为6.5m.
(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,
∴CE=4﹣3.4=0.6(m),
∴OE=r﹣CE=6.5﹣0.6=5.9(m),
在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,
∴EN=7.44(m).
∴MN=2EN=2×7.44≈5.4m>5m.
∴此货船能顺利通过这座拱桥.
1.(2022•南海区校级一模)如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )
A.50mB.45mC.40mD.60m
2.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )
A.1米B.2米C.(3−5)米D.(3+5)米
3.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )
A.53mB.2mC.83mD.3m
4.(2021秋•海淀区校级期中)数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接AB,再作出AB的垂直平分线,交AB于点C,交AB于点D,测出AB,CD的长度,即可计算得出轮子的半径.现测出AB=40cm,CD=10cm,则轮子的半径为( )
A.50cmB.35cmC.25cmD.20cm
5.(2021秋•曾都区期中)在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升( )
A.1分米B.4分米
C.3分米D.1分米或7分米
6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为( )
A.3cmB.134cmC.154cmD.174cm
7.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )
A.10cmB.15cmC.20cmD.24cm
8.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 .(结果保留π)
9.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,BC的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是 cm.
10.(2022•柯桥区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为 寸.
11.(2021秋•瑞安市期末)某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= m.
12.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 cm(玻璃瓶厚度忽略不计).
13.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为 米.
14.(2021秋•金安区校级期末)往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.
15.(2021秋•惠城区校级期中)如图,⊙O为水管横截面,水面宽AB=24cm,水的最大深度为18cm,求⊙O的半径.
16.(2021秋•奈曼旗期中)如图所示,测得AB是8mm,测得钢珠顶端离零件表面的距离为8mm,求这个圆的直径.
17.(2021秋•阜阳月考)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”
译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸).问这块圆形木材的直径(AC)是多少?”如图所示,请根据所学的知识解答上述问题.
18.(2021秋•高新区期中)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)
(2)若这个输水管道有水部分的水面宽AB=32cm,水最深处的地方高度为8cm,求这个圆形截面的半径.
19.(2021秋•黔西南州期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.
20.(2021秋•余干县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).
(1)求该圆弧所在圆的半径;
(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.
21.如图①,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图②是一款拱门的示意图,其中C为AB中点,D为拱门最高点,线段CD经过圆心,已知拱门的半径为1.5m,拱门最下端AB=1.8m.
(1)求拱门最高点D到地面的距离;
(2)现需要给房间内搬进一个长和宽为2m,高为1.2m的桌子,已知搬桌子的两名工人在搬运时所抬高度相同,且高度为0.5m,判断搬运该桌子时是否能够通过拱门.(参考数据:5≈2.236)
22.(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.
(1)请你帮助小勇求此圆弧形拱桥的半径;
(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.
初中数学人教版七年级上册第三章 一元一次方程3.4 实际问题与一元一次方程课后作业题: 这是一份初中数学人教版七年级上册第三章 一元一次方程3.4 实际问题与一元一次方程课后作业题,文件包含七年级数学上册专题34其他应用问题重点题专项讲练人教版原卷版docx、七年级数学上册专题34其他应用问题重点题专项讲练人教版解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
人教版七年级上册1.2.1 有理数同步测试题: 这是一份人教版七年级上册1.2.1 有理数同步测试题,文件包含七年级数学上册专题17有理数的应用重点题专项讲练人教版原卷版docx、七年级数学上册专题17有理数的应用重点题专项讲练人教版解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
人教版八年级上册14.2 乘法公式综合与测试同步测试题: 这是一份人教版八年级上册14.2 乘法公式综合与测试同步测试题,文件包含八年级数学上册专题143乘法公式及其应用重点题专项讲练人教版原卷版docx、八年级数学上册专题143乘法公式及其应用重点题专项讲练人教版解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。