2022-2023学年广西防城港市七年级(下)期末数学试卷(含解析)
展开1. − 2的相反数是( )
A. 2B. − 22C. − 2D. −2
2. 在平面直角坐标系中,点P(−2,3)在第象限.( )
A. 一B. 二C. 三D. 四
3. 下列命题中,是假命题的是( )
A. 邻补角一定互补B. 平移不改变图形的形状和大小
C. 两条直线被第三条直线所截,同位角相等D. 相等的角不一定是对顶角
4. 用不等式表示图中的解集,以下选项正确的是( )
A. x>1B. x<1C. x≥1D. x≤1
5. 如图,下列条件中,不能判断直线l1//l2的是( )
A. ∠1=∠3
B. ∠2=∠3
C. ∠4=∠5
D. ∠2+∠4=180°
6. 已知二元一次方程x+y=2,用含x的式子表示y,正确的是( )
A. y=2−xB. y=x−2C. x=2+yD. x=2−y
7. 某校师生总人数为1 000人,其中男学生,女学生和教师所占的比例如图所示,则该校男学生人数为( )
A. 430人
B. 450人
C. 550人
D. 570人
8. 若|x−8|+ y−3=0,yx的值为( )
A. 2B. −2C. ±2D. 4
9. 若m<−1,则下列各式中正确的是( )
A. m−1>−2B. m3<−13C. m+1>0D. −2m<2
10. 如图,直线BC与直线DE相交于点O,OA⊥BC,垂足为O,∠COD:∠AOD=2:7,则∠AOE度数为( )
A. 140°
B. 130°
C. 120°
D. 110°
11. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( )
A. x+y=352x+2y=94B. x+y=354x+2y=94C. x+y=354x+4y=94D. x+y=352x+4y=94
12. 如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→⋯,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( )
A. (5,0)
B. (0,5)
C. (6,0)
D. (0,6)
二、填空题(本大题共6小题,共12.0分)
13. 比较大小: 5 ______ 7.
14. 若xm+1+y=2是二元一次方程,则m的值为______ .
15. 已知点A(a−3,b+4)是原点,则(a+b)2023的值为______ .
16. 如图,AD//BC,∠D=100°,CA平分∠BCD,则∠BCA= ______ .
17. 如图,两个直角三角形重叠在一起,将其中一个三角形ABC沿着点B到点C的方向平移到三角形DEF的位置.若AB=10,DH=4,平移距离为4,则阴影部分的面积是______ .
18. 对于任意实数a,b,c,d,我们规定:|a b|=ax+by,根据这一规定,若x,y同时满足|1−1|=−1,|2 1|=−8,则|−1 3|的值是______ .
三、解答题(本大题共8小题,共72.0分。解答应写出文字说明,证明过程或演算步骤)
19. (本小题6.0分)
计算:3−1+| 2−1|+ 4.
20. (本小题6.0分)
解方程组3m−b=−10−4m+b=12.
21. (本小题10.0分)
解不等式组2x+3≥x+52x+53−1>x−2,并在数轴上表示它的解集.
22. (本小题10.0分)
如图,三角形ABC中,D是AB上的一点,E是AC上一点,∠ADE=70°,∠C=45°,∠AED=45°.
(1)求∠B的度数;
(2)过点D作DF//AC交BC于点F,求∠BDF的度数.
23. (本小题10.0分)
如图,平面直角坐标系中,三角形ABC向右平移2个单位再向下平移3个单位得到三角形A1B1C1.
(1)写出下列各点坐标:A ______ ,B ______ ,C ______ ;
(2)画出平移后的三角形A1B1C1并求出三角形A1B1C1的面积.
24. (本小题10.0分)
小明在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况.他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题:
(1)样本容量为______ ,a= ______ ,b= ______ ,c= ______ ;
(2)补全频数分布直方图;
(3)请你估计该居民小区家庭收入大于1000不足1600元的大约有多少户?
25. (本小题10.0分)
防城港市某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门课程,需要购进一批篮球和足球,已知购买2个篮球和3个足球共需费用510元,购买3个篮球和5个足球共需费用810元.
(1)求篮球和足球的单价分别是多少元?
(2)该学校准备用不超过6000元购买篮球和足球共60个,求最多能购买多少个篮球?
26. (本小题10.0分)
阅读下面材料:
(1)小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为直线AB,CD之间一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.下面是小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EF//AB,
则有∠BEF= ______ ,
∵AB//CD,
∴ ______ //EF,
∴∠FED= ______ ,
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,直线a//b,BE平分∠ABC,DE平分∠ADC,若∠ABC=50°,∠ADC=60°,求∠BED的度数,(温馨提示:过点E作EF//AB)
答案和解析
1.【答案】A
【解析】解:− 2的相反数是 2.
故选:A.
根据绝对值相等,符号相反的两个数互为相反数,即可写出答案.
本题考查的知识点为相反数的概念,关键在于熟练掌握相反数的概念并进行简单运算.
2.【答案】B
【解析】解:点P(−2,3)在第二象限.
故选:B.
根据各象限内点的坐标特征解答.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
3.【答案】C
【解析】解:邻补角一定互补,故A是真命题,不符合题意;
平移不改变图形的形状和大小,故B是真命题,不符合题意;
两条平行线被第三条直线所截,同位角相等,故C是假命题,符合题意;
相等的角不一定是对顶角,故D是真命题,不符合题意;
故选:C.
根据邻补角概念,平移的性质,平行线性质,对顶角性质逐项判断.
本题考查命题与定理,解题的关键是掌握教材上相关的概念和定理.
4.【答案】C
【解析】解:由题意,得x≥1,
故选:C.
根据不等式解集的表示方法,可得答案.
本题考查了在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示“<”,“>”要用空心圆点表示.
5.【答案】B
【解析】
【分析】
此题主要考查了平行线的判定,解题的关键是熟练掌握平行线的判定定理.
根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,逐项进行分析判断即可.
【解答】
解:A、∠1=∠3时,根据内错角相等,两直线平行,能判断直线l1//l2,故此选项不合题意;
B、∠2=∠3时,不能判断直线l1//l2,故此选项符合题意;
C、∠4=∠5时,根据同位角相等,两直线平行,能判断直线l1//l2,故此选项不合题意;
D、∠2+∠4=180°时,根据同旁内角互补,两直线平行,能判断直线l1//l2,故此选项不合题意;
故选B.
6.【答案】A
【解析】解:x+y=2,
移项,得y=2−x,
故选:A.
根据等式的性质移项即可.
本题考查了解二元一次方程,能正确根据等式的性质进行变形是解此题的关键.
7.【答案】B
【解析】解:∵从扇形统计图中可知该校男学生人数占45%,
∴该校男学生人数=1000×45%=450人,
故选:B.
利用该校男学生人数占45%,乘以总人数,即可求出该校男学生人数.
扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
8.【答案】A
【解析】解:∵|x−8|+ y−3=0,
∴x−8=0,y−3=0,
∴x=8,y=3,
∴yx=38=2.
故选:A.
根据非负数的性质,可得到x=8,y=3代入所求代数式即可.
本题考查了非负数的性质,绝对值和算术平方根是非负数,最小值都为0.
9.【答案】B
【解析】解:A、∵m<−1,
∴m−1<−1−1,
∴m−1<−2,
故A不符合题意;
B、∵m<−1,
∴m3<−13,
故B符合题意;
C、∵m<−1,
∴m+1<−1+1,
∴m+1<0,
故C不符合题意;
D、∵m<−1,
∴−2m>2,
故D不符合题意;
故选:B.
根据不等式的基本性质进行计算,逐一判断即可解答.
本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.
10.【答案】D
【解析】解:∵OA⊥BC,
∴∠AOC=90°,
∴∠COD+∠AOD=90°,
∵∠COD:∠AOD=2:7,
∴∠COD=20°,∠AOD=70°,
∴∠AOE=180°−∠AOD=180°−70°=110°,
故选:D.
根据OA⊥BC得出∠COD+∠AOD=90°,结合已知条件即可求出∠AOD的度数,再根据邻补角互补的性质即可求出∠AOE的度数.
此题主要考查了垂线的定义,要注意领会由垂直得直角这一要点.
11.【答案】D
【解析】
【分析】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
根据题意可以列出相应的方程组,从而可以解答本题.
【解答】
解:由题意可得,
x+y=352x+4y=94,
故选:D.
12.【答案】A
【解析】解:3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);35秒到达(5,0).
故选:A.
应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.
本题主要考查了点的坐标探索规律题,解决问题的关键找到各点相对应的规律.
13.【答案】<
【解析】解:∵5<7,
∴ 5< 7.
故答案为:<.
依据被开放数越大对应的算术平方根越大比较即可.
本题主要考查的是比较实数的大小,熟练掌握算术平方根的性质是解题的关键.
14.【答案】0
【解析】解:∵xm+1+y=2是二元一次方程,
∴m+1=1,
解得:m=0.
故答案为:0.
利用二元一次方程的定义判断即可求出m的值.
此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.
15.【答案】−1
【解析】解:∵点A(a−3,b+4)是原点,
∴a−3=0,b+4=0,
∴a=3,b=−4,
∴(a+b)2023=(3−4)2023=(−1)2023=−1,
故答案为:−1.
根据原点的坐标为(0,0)可得a−3=0,b+4=0,从而可得a=3,b=−4,然后把a,b的值代入式子中进行计算,即可解答.
本题考查了点的坐标,熟练掌握原点的坐标是解题的关键.
16.【答案】40°
【解析】解:∵AD//BC,∠D=100°,
∴∠BCD=180°−∠D=80°,
∵CA平分∠BCD,
∴∠BCA=12∠BCD=40°,
故答案为:40°.
先利用平行线的性质可得∠BCD=80°,然后再利用角平分线的定义可得∠BCA=12∠BCD=40°,即可解答.
本题考查了平行线的性质,根据题目的已知条件并结合图形进行分析是解题的关键.
17.【答案】32
【解析】解:∵△ABC沿着点B到点C的方向平移到三角形DEF的位置,
∴DE=AB=10,BE=4,
∵DH=4,
∴HE=DE−DH=10−4=6,
∴阴影部分的面积=12×(10+6)×4=32,
故答案为:32.
利用平移的性质得到DE=AB=10,HE=6,再利用梯形面积公式解答即可.
本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.
18.【答案】−3
【解析】解:由题意可得:x−y=−12x+y=−8,
解得:x=−3y=−2,
故|−1 3|=−1×(−3)+3×(−2)=3−6=−3.
故答案为:−3.
直接利用已知运算公式得出x,y的方程组,进而得出x,y的值,再代入得出答案.
此题主要考查了实数的运算,解答此题的关键是得出x,y的值.
19.【答案】解:3−1+| 2−1|+ 4
=−1+ 2−1+2
= 2.
【解析】首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.
此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
20.【答案】解:3m−b=−10①−4m+b=12②,
①+②得:−m=2,
解得:m=−2,
将m=−2代入①得:−6−b=−10,
解得:b=4,
故原方程组的解为:m=−2b=4.
【解析】利用加减消元法解方程组即可.
本题考查解二元一次方程组,熟练掌握解方程组的方法是解题的关键.
21.【答案】解:2x+3≥x+5①2x+53−1>x−2②,
解不等式①得:x≥2,
解不等式②得:x<8,
∴不等式组的解集为2≤x<8,
在数轴上表示如下:
.
【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
22.【答案】解:(1)∵∠C=45°,∠AED=45°,
∴∠C=∠AED,
∴DE//BC,
∴∠B=∠ADE=70°.
(2)∵DF//AC,
∴∠DFB=∠C=45°,
∴∠BDF=180°−∠DFB−∠B=180°−45°−70°=65°.
【解析】(1)先证∠C=∠AED,则可得DE//BC,由两直线平行,同位角相等可得结果;
(2)根据两直线平行,同位角相等可得∠BFD的度数,再由三角形的内角和定理可得∠BDF的度数.
此题主要是考查了平行线的判定及性质,三角形的内角和定理,能够熟练掌握平行线的判定及性质是解答此题的关键.
23.【答案】(−3,3) (−5,1) (−2,0)
【解析】解:(1)A(−3,3),B(−5,1),C(−2,0).
故答案为:(−3,3),(−5,1),(−2,0);
(2)如图,三角形A1B1C1即为所求.三角形A1B1C1的面积=3×3−12×2×2−2×12×1×3=4
(1)根据A,B,C的位置写出坐标;
(2)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可.
本题考查作图−平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
24.【答案】40 3 7.5% 18
【解析】解:(1)由表格可得样本容量40;
∵1000≤x<1200中百分比占45%,
∴频数c=40×0.45=18人;
∴1400≤x<1600中频数a=40−2−6−18−9−2=3(人),
∴b=340=0.075=7.5%,
故答案为:40;3;7.5%;18;
(2)补全频数分布直方图如下:
;
(3)450×(45%+22.5%+7.5%)≈338(户),
答:估计该居民小区家庭收入大于1000不足1600元的大约有338户.
(1)由表格可得样本容量;再根据样本容量乘1000≤x<1200这组的频率确定c,再确定1400≤x<1600这组的频数与频率及1000≤x<1200这组的频率,从而可得答案;
(2)根据(1)中分布表中的频数,画好频数分布直方图即可;
(3)先确定大于1000不足1600元所占的百分比,再把这个百分比乘以总体的总人数即可得到答案.
本题考查的是频数分布表与频数分布直方图,频数与频率的概念,利用样本估计总体,掌握以上知识是解题的关键.
25.【答案】解:(1)设篮球单价是x元,足球的单价y元,
根据题意得2x+3y=5103x+5y=810,
解得:x=120y=90,
∴篮球单价是120元,足球的单价90元;
(2)设购买个m个篮球,
根据题意得:120m+90(60−m)≤6000,
解得m≤20,
∴最多能购买个20个篮球.
【解析】(1)设篮球单价是x元,足球的单价y元,可得2x+3y=5103x+5y=810,即可解得答案; (2)设购买个m个篮球,有120m+90(60−m)≤6000,可得最多能购买个20个篮球.
本题考查二元一次方程组的应用和一元一次不等式的应用,解题的关键是读懂题意,列出方程组和不等式.
26.【答案】∠B CD ∠D
【解析】(1)证明:过点E作EF//AB,
则有∠BEF=∠B,
∵AB//CD,
∴CD//EF,
∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D,
故答案为:∠B,CD,∠D;
(2)解:如图乙,过点E作EF//AB,
∴∠BEF=∠ABE,
∵a//b,即AB//CD,
∴CD//EF,
∴∠DEF=∠CDE,
∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠ABE=12∠ABC,∠CDE=12∠ADC,
又∵∠ABC=50°,∠ADC=60°,
∴∠ABE=25°,∠CDE=30°,
∴∠BED=∠ABE+∠CDE=25°+30°=55°.
(1)根据两直线平行内错角相等可完成第一空,根据平行的传递性可完成第二空,根据两直线平行内错角相等可完成第三空;
(2)过点E作EF//AB,根据平行的性质,和平行具有传递性,可推出∠BED=∠ABE+∠CDE,再根据角平分线的定义即可求出∠ABE和∠CDE的度数,即可得解.
本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.
分组
频
百分比
600≤x<800
2
5%
800≤x<1000
6
15%
1000≤x<1200
c
45%
1200≤x<1400
9
22.5%
1400≤x<1600
a
b
1600≤x<1800
2
5%
合计
40
100%
2023-2024学年广西防城港市七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年广西防城港市七年级(上)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年广西防城港市上思县七年级(下)期中数学试卷(含解析): 这是一份2022-2023学年广西防城港市上思县七年级(下)期中数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年广西防城港市七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年广西防城港市七年级(下)期末数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。