还剩15页未读,
继续阅读
第六章概率初步章末复习-(北师大) 课件PPT
展开这是一份第六章概率初步章末复习-(北师大) 课件PPT,共23页。
第6章 概率初步章 末 复 习学习目标1、通过知识梳理,能按自己的理解形成知识结构图.2、会判断确定事件和不确定事件.3、知道通过大量的重复试验,可以用频率来估计概率;会求简单事件的概率.4、能利用简单事件发生的概率解决实际问题.知识回顾1、事件的类型必然事件:不可能事件:在一定条件下,有些事件必然会发生.在一定条件下,有些事件必然不会发生.随机事件: 在一定条件下,可能发生也可能不发生的事件.确定事件事件随机事件特点:事先不能预料事件是否发生,即事件的发生具有不确定性.一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.1、事件的类型必然事件:不可能事件:在一定条件下,有些事件必然会发生.在一定条件下,有些事件必然不会发生.随机事件: 在一定条件下,可能发生也可能不发生的事件.确定事件事件随机事件特点:事先不能预料事件是否发生,即事件的发生具有不确定性.一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.例1、下列事件中, 是必然事件的是( ).A.任意买一张电影票, 座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口, 遇到红灯D.明天一定会下雨B例2、如图,任意转动转盘1次,当转盘停止运动时,有下列事件:①指针落在标有5的区域内;②指针落在标有10的区城内;③指针落在标有奇数的区域内.请将这些事件的序号按事件发生的可能性从小到大的顺序依次排列为__________.②①③ 2、频率与概率的关系 在试验次数很大时,随机事件发生的频率具有稳定性. 一般地,大量重复的试验中,我们常用随机事件A发生的频率来估计事件A发生的概率.必然事件发生的概率为1;不可能事件发生的概率为0;随机事件A发生的概率P(A)是0与1之间的一个常数.例3、某学习小组做“用频率估计概率”的试验时, 统计了某一结果出现的频率, 绘制了如图所示的折线统计图, 则符合这一结果的试验最有可能的是( ).DA. 袋中装有大小和质地都相同的3个红球和2个黄球, 从中随机取1个, 取到红球B. 掷一枚质地均匀的正六面体骰子, 向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币, 两次都出现反面D. 先后两次掷一枚质地均匀的正六面体骰子, 两次向上的面的点数之和是7或超过93、概率的计算及其应用等可能事件的概率计算公式: 一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为: B A例6、在一次晚会上, 大家站在飞镖靶前投镖, 只见靶子设计成如图的形式. 已知从里到外的三个圆的半径分别为1, 2, 3, 并且形成A, B, C三个区域.如果飞镖没有落在最大圆内或只落在圆周上, 那么可以重新投镖.(1)分别求出三个区域的面积.(2)雨薇与方冉约定:飞镖落在A, B区域雨薇得1分,飞镖落在C区域方冉得1分.你认为这个游戏公平吗?为什么?如果不公平,请你修改得分规则,使这个游戏公平.解:(1)SA =π×12 =π, SB =π×22 -π×12 =3π, SC =π×32 -π×22=5π. 随堂练习1.下列事件为必然事件的是 ( )A.射击一次,中靶B.画一个三角形,其内角和是180°C.掷一枚质地均匀的硬币,正面朝上D.12人中至少有2人的生日在同一个月B 2.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是 ( )A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6B B 4.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是 ( )A.5 B.10C.12 D.15A B D 8.某批乒乓球的质量检验结果如下:(1)填写表中的空格;(2)画出这批乒乓球优等品频率的折线统计图;(3)这批乒乓球优等品概率的估计值是多少?解:(1)176÷200=0.88,364÷400=0.91,450÷500=0.9.故答案为0.88,0.91,0.9.(2)画出的折线统计图如图所示.(3)根据统计图可以看出,当抽取的数量逐渐增多时,优等品的频率稳定在0.9左右,因此这批乒乓球优等品概率的估计值为0.9. 解:如图所示:(1)(2)(3)(4)课堂小结概率事 件确定事件随机事件频 率频率的稳定性必然事件不可能事件频率估计概率概率的计算与应用
相关资料
更多