搜索
    上传资料 赚现金
    英语朗读宝

    2023八年级数学下册第十七章勾股定理单元检测试题新版新人教版

    2023八年级数学下册第十七章勾股定理单元检测试题新版新人教版第1页
    2023八年级数学下册第十七章勾股定理单元检测试题新版新人教版第2页
    2023八年级数学下册第十七章勾股定理单元检测试题新版新人教版第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学17.1 勾股定理当堂达标检测题

    展开

    这是一份数学17.1 勾股定理当堂达标检测题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    勾股定理
    一、选择题(每题3分,共18分)
    1. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )
    (A) (B) (C) (D)
    解:因为,故选(C)
    2.在一个直角三角形中,若斜边的长是,一条直角边的长为,那么这个
    直角三角形的面积是( )
    (A) (B) (C) (D)
    解:由勾股定理知,另一条直角边的长为,所以这个直角三角形的面积为.
    3.如图1,一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( )
    (A)0.6米 (B)0.7米 (C)0.8米 (D)0.9米
    解:依题设.在中,由勾股定理,得

    图1

    由,
    得.
    在中, 由勾股定理,得

    所以
    故选(C)
    4.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是( )
    (A)132 (B)121 (C)120 (D)以上答案都不对
    解:设直角三角形的斜边长为,另外一条直角边长为,则.
    由勾股定理,得.
    因为都是自然数,则有.
    所以.
    因此直角三角形的周长为121+11=132.
    故选(A)
    5.直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )
    (A) (B)
    (C) (D)
    解:设两直角边分别为,斜边为,则,.
    由勾股定理,得.
    所以.
    所以.所以.
    故选(C)
    6. 直角三角形的三边是,并且都是正整数,则三角形其中一边的长可能是( )
    (A)61 (B)71 (C)81 (D)91
    解:因为.根据题意,有.

    图2
    整理,得.所以.
    所以.
    即该直角三角形的三边长是.
    因为只有81是3的倍数.
    故选(C)
    二、填空题(每题3分,共24分)
    7. 如图2,以三角形的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.
    解:根据题意,有,即
    .
    整理,得.
    故此三角形为直角三角形.
    8. 在中,,则边的长为______.
    解:本题在中,没有指明哪一个角为直角,故分情况讨论:
    当为直角时,为斜边,由勾股定理,得,
    ∴ ;
    当不为直角时, 是直角边,为斜边,由勾股定理,得,

    图3

    因此,本题答案为4或.
    9. 如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.
    解:由勾股定理,知最短距离为.

    图4
    10. 如图4,已知中,,以的各边为边在外作三个正方形,分别表示这三个正方形的面积,,则
    解:由勾股定理,知,即,所以.

    图5
    11.如图5,已知,中,,从直角三角形两个锐角顶点所引的中线的长,则斜边之长为______.
    解: 、是中线,设,由已知,,
    所以两式相加,
    得,所以

    图6
    12.如图6,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上,设此点为,若的面积为,那么折叠的面积为_____.
    解:由折叠的对称性,得.
    由,得.
    在中,由勾股定理,得.所以.
    设,则.
    在中,,即.解得.
    故.
    13.如图7,已知:中,, 这边上的中线长, ,则为_____.
    解:因为为中线,所以,于是.

    图7
    但,故,即.又,两边平方,得.
    而由勾股定理,得.
    所以.故.
    即.
    14.在中,,边上有2006个不同的点,
    记,则=_____.
    解:如图8,作于,因为,则.

    图8
    由勾股定理,得.所以
    .
    所以.
    因此.
    三、解答题(每题10分,共40分)
    15.如图9,一块长方体砖宽,长,上的点距地面的高,地面上处的一只蚂蚁到处吃食,需要爬行的最短路径是多少?
    【解】如图9,在砖的侧面展开图10上,连结,则的长即为处到处的最短路程.
    在中,因为,,
    所以.
    所以.
    因此蚂蚁爬行的最短路径为.
                    
     图10
     图9 









    16.如图11所示的一块地,,,,,,求这块地的面积.
    解:连结,在中,由勾股定理,得
    ,即,所以.
    在中,由,即.
    所以为直角三角形,.
    所以.
    所以这块地的面积为.

    图11






    17.如图12所示,在中,,且,
    ,求的长.
    图12答图13
    解:如图13,因为为等腰直角三角形,所以.
    所以把绕点旋转到,则.
    所以.连结.
    所以为直角三角形.
    由勾股定理,得.所以.
    因为所以.
    所以.
    所以.
    18.中,,若,如图14,根据勾股定理,则,若不是直角三角形,如图15和图16,请你类比勾股定理,试猜想与的关系,并证明你的结论。

    图14 图15 图16
    解:若是锐角三角形,则有
    若是钝角三角形,为钝角,则有
    当是锐角三角形时,如图17,

    证明:过点作,垂足为设为,则有,


    图17
    根据勾股定理,得


    ∵ , ∴

    当是钝角三角形时,图18,

    图18
    证明:过点作,交的延长线于点
    设为,则有
    根据勾股定理,得


    ∵ ,∴



    相关试卷

    人教版八年级下册第十七章 勾股定理17.1 勾股定理课后作业题:

    这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理课后作业题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教版八年级下册17.1 勾股定理单元测试达标测试:

    这是一份人教版八年级下册17.1 勾股定理单元测试达标测试,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    人教版八年级下册17.1 勾股定理单元测试综合训练题:

    这是一份人教版八年级下册17.1 勾股定理单元测试综合训练题,共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map