江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-01选择题
展开江苏徐州三年(2021-2023)中考数学真题分题型分类汇编-01选择题
一、单选题
1.(2021·江苏徐州·统考中考真题)3的相反数为( )
A.﹣3 B.﹣ C. D.3
2.(2021·江苏徐州·统考中考真题)下列图形,是轴对称图形但不是中心对称图形的是( )
A. B.
C. D.
3.(2021·江苏徐州·统考中考真题)下列计算正确的是( )
A. B. C. D.
4.(2021·江苏徐州·统考中考真题)甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
袋子 糖果
红色
黄色
绿色
总计
甲袋
2颗
2颗
1颗
5颗
乙袋
4颗
2颗
4颗
10颗
若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )
A.摸出红色糖果的概率大 B.摸出红色糖果的概率小
C.摸出黄色糖果的概率大 D.摸出黄色糖果的概率小
5.(2021·江苏徐州·统考中考真题)第七次全国人民普查的部分结果如图所示.
根据该统计图,下列判断错误的是( )
A.徐州0-14岁人口比重高于全国 B.徐州15-59岁人口比重低于江苏
C.徐州60岁以上人口比重高于全国 D.徐州60岁以上人口比重高于江苏
6.(2021·江苏徐州·统考中考真题)下列无理数,与3最接近的是( )
A. B. C. D.
7.(2021·江苏徐州·统考中考真题)在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )
A. B. C. D.
8.(2021·江苏徐州·统考中考真题)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )
A.27倍 B.14倍 C.9倍 D.3倍
9.(2022·江苏徐州·统考中考真题)﹣3的绝对值是( )
A.﹣3 B.3 C.- D.
10.(2022·江苏徐州·统考中考真题)下列图案是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
11.(广东省广州市第六十五中学2022-2023学年八年级下学期期中数学试卷)若代数式有意义,则实数x的取值范围是( )
A. B. C. D.
12.(2022·江苏徐州·统考中考真题)下列计算正确的是( )
A. B.
C. D.
13.(2022·江苏徐州·统考中考真题)如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是( )
A. B. C. D.
14.(2022·江苏徐州·统考中考真题)我国近十年的人口出生率及人口死亡率如图所示.
已知人口自然增长率=人口出生率—人口死亡率,下列判断错误的是( )
A.与2012年相比,2021年的人口出生率下降了近一半
B.近十年的人口死亡率基本稳定
C.近五年的人口总数持续下降
D.近五年的人口自然增长率持续下降
15.(2022·江苏徐州·统考中考真题)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )
A. B. C. D.
16.(2022·江苏徐州·统考中考真题)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为( )
A.5 B.6 C. D.
17.(2023·江苏徐州·统考中考真题)下列事件中的必然事件是( )
A.地球绕着太阳转 B.射击运动员射击一次,命中靶心
C.天空出现三个太阳 D.经过有交通信号灯的路口,遇到红灯
18.(2023·江苏徐州·统考中考真题)下列图案是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
19.(2023·江苏徐州·统考中考真题)如图,数轴上点分别对应实数,下列各式的值最小的是( )
A. B. C. D.
20.(2023·江苏徐州·统考中考真题)下列运算正确的是( )
A. B. C. D.
21.(2023·江苏徐州·统考中考真题)徐州云龙山共九节,蜿蜒起伏,形似游龙,每节山的海拔如图所示.
其中,海拔为中位数的是( )
A.第五节山 B.第六节山 C.第八节山 D.第九节山
22.(2023·江苏徐州·统考中考真题)的值介于( )
A.25与30之间 B.30与35之间 C.35与40之间 D.40与45之间
23.(2023·江苏徐州·统考中考真题)在平面直角坐标系中,将二次函数的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为( )
A. B. C. D.
24.(2023·江苏徐州·统考中考真题)如图,在中,为的中点.若点在边上,且,则的长为( )
A.1 B.2 C.1或 D.1或2
参考答案:
1.A
【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可.
【详解】解:3的相反数是﹣3.
故选:A.
【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.
2.D
【分析】根据轴对称图形和中心对称图形的定义对选项逐一分析即可
【详解】A.不是轴对称图形,也不是中心对称图形,不符合题意;
B.是轴对称图形,也是中心对称图形,不符合题意;
C.不是轴对称图形,是中心对称图形,不符合题意;
D. 是轴对称图形但不是中心对称图形,符合题意
故选D
【点睛】本题考查了轴对称图形和中心对称图形的定义,了解轴对称图形和中心对称图形的定义是解题的关键.
3.A
【分析】根据幂的乘方,同底数幂的乘法,合并同类项,同底数幂的除法法则对选项逐一判断即可
【详解】A. ,符合题意;
B. ,不符合题意;
C. ,不符合题意;
D. ,不符合题意
故选A
【点睛】本题考查了幂的乘方,同底数幂的乘法,合并同类项,同底数幂的除法,熟悉以上运算法则是解题的关键.
4.C
【分析】分别对甲乙两个袋子的红色及黄色的糖果的概率进行计算,再去比较即可.
【详解】解:P(甲袋摸出红色糖果),
P(甲袋摸出黄色糖果),
P(乙袋摸出红色糖果),
P(乙袋摸出黄色糖果),
∴P(甲袋摸出红色糖果)=P(乙袋摸出红色糖果),故A,B错误;
P(甲袋摸出黄色糖果)>P(乙袋摸出黄色糖果),故D错误,C正确.
故选:C.
【点睛】本题主要考查了简单概率的计算,掌握概率公式并能灵活掌握是解题关键.
5.D
【分析】根据题目中的条形统计图对四个选项依次判断即可.
【详解】解:根据题目中的条形统计图可知:
徐州0-14岁人口比重高于全国,A选项不符合题意;
徐州15-59岁人口比重低于江苏,B选项不符合题意;
徐州60岁以上人口比重高于全国,C选项不符合题意;
徐州60岁以上人口比重低于江苏,D选项符合题意.
故选:D.
【点睛】本题考查条形统计图的分析,正确从条形统计图中读取数据是解题关键.
6.C
【分析】先比较各个数平方后的结果,进而即可得到答案.
【详解】解:∵32=9,()2=6,()2=7,()2=10,()2=11,
∴与3最接近的是,
故选C.
【点睛】本题主要考查无理数的估计,理解算术平方根与平方的关系,是解题的关键.
7.B
【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案.
【详解】解:∵的顶点坐标为(0,0)
∴将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),
∴所得抛物线对应的函数表达式为,
故选B
【点睛】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.
8.B
【分析】设OB=x,则OA=3x,BC=2x,根据圆的面积公式和正方形的面积公式,求出面积,进而即可求解.
【详解】解:由圆和正方形的对称性,可知:OA=OD,OB=OC,
∵圆的直径与正方形的对角线之比为3:1,
∴设OB=x,则OA=3x,BC=2x,
∴圆的面积=π(3x)2=9πx2,正方形的面积==2x2,
∴9πx2÷2x2=,即:圆的面积约为正方形面积的14倍,
故选B.
【点睛】本题主要考查圆和正方形的面积以及对称性,根据题意画出图形,用未知数表示各个图形的面积,是解题的关键.
9.B
【分析】根据负数的绝对值是它的相反数,可得出答案.
【详解】根据绝对值的性质得:|-3|=3.
故选B.
【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.
10.C
【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.
【详解】解:A、是中心对称图形,是轴对称图形,故A选项不合题意;
B、是中心对称图形,是轴对称图形,故B选项不合题意;
C、是轴对称图形,不是中心对称图形,故C选项不合题意;
D、是中心对称图形,是轴对称图形,故D选项不合题意;
故选:C.
【点睛】本题主要考查了中心对称图形,关键是找出对称中心.
11.B
【分析】根据二次根式被开方数非负即可求解.
【详解】由已知得:,
求解得:.
故选:B.
【点睛】本题考查二次根式是否有意义,根据被开方数非负直接求解不等式即可.
12.A
【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项,积的乘方逐项分析判断即可求解.
【详解】解:A. ,故该选项正确,符合题意;
B. ,故该选项不正确,不符合题意;
C. ,故该选项不正确,不符合题意;
D. ,故该选项不正确,不符合题意;
故选A
【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,积的乘方,正确的计算是解题的关键.
13.D
【分析】根据骰子表面展开后,其相对面的点数之和是7,逐项判断即可作答.
【详解】A项,2的对面是4,点数之和不为7,故A项错误;
B项,2的对面是6,点数之和不为7,故B项错误;
C项,2的对面是6,点数之和不为7,故C项错误;
D项,1的对面是6,2的对面是5,3的对面是4,相对面的点数之和都为7,故D项正确;
故选:D.
【点睛】本题主要考查了立体图形的侧面展开图的知识,解答时,找准相对面是解答本题的关键.没有共同边的两个面即为相对的面.
14.C
【分析】根据折线统计图逐项分析判断即可求解.
【详解】解:A. 与2012年相比,2021年的人口出生率下降了近一半,故该选项正确,不符合题意;
B. 近十年的人口死亡率基本稳定,故该选项正确,不符合题意;
C. 近五年的人口总数持续上升,只是自然增长率在变小,故该选项不正确,符合题意;
D. 近五年的人口自然增长率持续下降,故该选项正确,不符合题意.
故选C.
【点睛】本题考查了折线统计图,从统计图获取信息是解题的关键.
15.B
【分析】如图,将阴影部分分割成图形中的小三角形,令小三角形的面积为a,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.
【详解】解:如图,
根据题意得:图中每个小三角形的面积都相等,
设每个小三角形的面积为a,则阴影的面积为6a,正六边形的面积为18a,
∴将一枚飞镖任意投掷到镖盘上,飞镖落在阴影区域的概率为.
故选:B
【点睛】本题主要考查几何概率,根据正六边形的性质得到图中每个小三角形的面积都相等是解题的关键.
16.C
【分析】证明△ABE∽△CDE,求得AE:CE,再根据三角形的面积关系求得结果.
【详解】解:∵CD∥AB,
∴△ABE∽△CDE,
∴=2,
∴,
故选:C.
【点睛】本题主要考查了相似三角形的性质与判定,三角形的面积公式,关键在于证明三角形相似.
17.A
【分析】根据必然事件、不可能事件、随机事件的概念,可得答案.
【详解】解∶ A、地球绕着太阳转是必然事件,故A正确;
B、射击运动员射击一次,命中靶心是随机事件,故B错误;
C、天空出现三个太阳是不可能事件,故C错误;
D、经过有交通信号灯的路口,遇到红灯是随机事件,故D错误;
故选∶ A.
【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
18.A
【分析】根据轴对称图形:一个图形如果沿一条直线折叠,直线两旁部分能够完全重合的图形;中心对称图形:一个图形绕某个点旋转180度后能与原图完全重合的图形;由此问题可求解.
【详解】解:A、是中心对称图形但不是轴对称图形,故符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、既是轴对称图形也是中心对称图形,故不符合题意;
D、既不是轴对称图形也不是中心对称图形,故不符合题意;
故选A.
【点睛】本题主要考查轴对称图形与中心对称图形的识别,熟练掌握轴对称图形与中心对称图形的概念是解题的关键.
19.C
【分析】根据数轴可直接进行求解.
【详解】解:由数轴可知点C离原点最近,所以在、、、中最小的是;
故选C.
【点睛】本题主要考查数轴上实数的表示、有理数的大小比较及绝对值,熟练掌握数轴上有理数的表示、有理数的大小比较及绝对值是解题的关键.
20.B
【分析】根据同底数幂的乘除法、幂的乘方及合并同类项可进行求解.
【详解】解:A、,原计算错误,故不符合题意;
B、,原计算正确,故符合题意;
C、,原计算错误,故不符合题意;
D、,原计算错误,故不符合题意;
故选B.
【点睛】本题主要考查同底数幂的乘除法、幂的乘方及合并同类项,熟练掌握同底数幂的除法、幂的乘方及同底数幂的乘法是解题的关键.
21.C
【分析】根据折线统计图把数据按从小到大排列,然后根据中位数可进行求解.
【详解】解:由折线统计图可按从小到大排列为90.7、99.2、104.1、119.2、131.8、133.5、136.6、139.6、141.6,所以海拔为中位数的是第5个数据,即为第八节山;
故选C.
【点睛】本题主要考查折线统计图及中位数,熟练掌握中位数的求法是解题的关键.
22.D
【分析】直接利用二次根式的性质得出的取值范围进而得出答案.
【详解】解∶∵.
∴即,
∴的值介于40与45之间.
故选D.
【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.
23.B
【分析】根据二次函数图象的平移“左加右减,上加下减”可进行求解.
【详解】解:由二次函数的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为;
故选B.
【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.
24.D
【分析】根据题意易得,然后根据题意可进行求解.
【详解】解:∵,
∴,
∵点D为的中点,
∴,
∵,
∴,
①当点E为的中点时,如图,
∴,
②当点E为的四等分点时,如图所示:
∴,
综上所述:或2;
故选D.
【点睛】本题主要考查含30度直角三角形的性质及三角形中位线,熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.
湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题②: 这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题②,共19页。试卷主要包含了单选题等内容,欢迎下载使用。
湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题①: 这是一份湖北鄂州三年(2021-2023)中考数学真题分题型分类汇编-01选择题①,共9页。试卷主要包含了单选题等内容,欢迎下载使用。
山东威海三年(2021-2023)中考数学真题分题型分类汇编-01选择题①: 这是一份山东威海三年(2021-2023)中考数学真题分题型分类汇编-01选择题①,共10页。试卷主要包含了单选题等内容,欢迎下载使用。