考点跟踪突破10 函数及其图象课件PPT
展开2.(2014·衡阳)小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(米)与散步所用的时间t(分)之间的函数关系.根据图象,下列信息错误的是( )A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟
3.(2014·白银)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y,则在下面函数图象中,大致能反映y与x之间函数关系的是( )
4.(2013·玉林)均匀地向一个瓶子注水,最后把瓶子注满,在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的( )
5.(2014·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系是( )
8.(2012·丽水)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动,图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程s(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶____千米.
9.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是 .
10.(2014·金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行____米.
三、解答题(共40分)11.(10分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:
(1)求师生何时回到学校?
(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进时,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10 km,8 km.现有A,B,C,D四个植树点与学校的路程分别是13 km,15 km,17 km,19 km,试通过计算说明哪几个植树点符合要求.
12.(10分)(2013·绍兴)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
13.(10分)(2012·株洲)如图,在△ABC中,∠C=90°,BC=5米,AC=12米,M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.
实际应用(3)已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
考点跟踪突破18 概率的应用课件PPT: 这是一份考点跟踪突破18 概率的应用课件PPT,共21页。
考点跟踪突破16 统计的应用课件PPT: 这是一份考点跟踪突破16 统计的应用课件PPT,共18页。
考点跟踪突破13 二次函数及其图象课件PPT: 这是一份考点跟踪突破13 二次函数及其图象课件PPT,共18页。