所属成套资源:2023年全国各地中考数学真题及答案
- 2023年云南省中考数学卷(含答案解析) 试卷 11 次下载
- 2023年台湾省中考数学试卷(含答案解析) 试卷 4 次下载
- 2023年四川省成都市中考数学试卷(含答案解析) 试卷 14 次下载
- 2023年四川省达州市中考数学试卷(含答案解析) 试卷 8 次下载
- 2023年四川省广安市中考数学试卷(含答案解析) 试卷 6 次下载
2023年四川省巴中市中考数学试卷(含答案解析)
展开这是一份2023年四川省巴中市中考数学试卷(含答案解析),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省巴中市中考数学试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)
1.(4分)下列各数为无理数的是( )
A.0.618 B. C. D.
2.(4分)如图所示图形中为圆柱的是( )
A. B.
C. D.
3.(4分)下列运算正确的是( )
A.x2+x3=x5 B.×=
C.(a﹣b)2=a2﹣b2 D.|m|=m
4.(4分)下列说法正确的是( )
A.多边形的外角和为360°
B.6a2b﹣2ab2=2ab(3a﹣2b)
C.525000=5.25×103
D.可能性很小的事情是不可能发生的
5.(4分)一次函数y=(k﹣3)x+2的函数值y随x增大而减小,则k的取值范围是( )
A.k>0 B.k<0 C.k>3 D.k<3
6.(4分)某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是( )
A.传 B.承 C.文 D.化
7.(4分)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为( )
A.5 B.7 C.10 D.﹣13
8.(4分)如图,⊙O是△ABC的外接圆,若∠C=25°,则∠BAO=( )
A.25° B.50° C.60° D.65°
9.(4分)某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
A.6 B.8 C.12 D.16
10.(4分)如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
11.(4分)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给出了(a+b)n展开式的系数规律.
当代数式x4﹣12x3+54x2﹣108x+81的值为1时,则x的值为( )
A.2 B.﹣4 C.2或4 D.2或﹣4
12.(4分)在平面直角坐标系中,直线y=kx+1与抛物线y=x2交于A、B两点,设A(x1,y1),B(x2,y2),则下列结论正确的个数为( )
①x1•x2=﹣4.
②y1+y2=4k2+2.
③当线段AB长取最小值时,则△AOB的面积为2.
④若点N(0,﹣1),则AN⊥BN.
A.1 B.2 C.3 D.4
二、填空题(本大题共6个小题,每小题3分,共18分.将正确答案直接写在答题卡相应的位置上)
13.(3分)在0,(﹣)2,﹣π,﹣2四个数中,最小的实数是 .
14.(3分)已知a为正整数,点P(4,2﹣a)在第一象限中,则a= .
15.(3分)这组数据1,3,5,2,8,13的中位数是 .
16.(3分)关于x的分式方程+=3有增根,则m= .
17.(3分)如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点H,tan∠ABG=,正方形ABCD的边长为8,则BH的长为 .
18.(3分)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=﹣x+3互为“Y函数”.若函数y=x2+(k﹣1)x+k﹣3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 .
三、解答题(本大题共7个小题,共84分.请将解答过程写在答题卡相应的位置上)
19.(16分)(1)计算:|3﹣|+()﹣1﹣4sin60°+()2.
(2)求不等式组的解集.
(3)先化简,再求值(+x﹣1)÷,其中x的值是方程x2﹣2x﹣3=0的根.
20.(10分)如图,已知等边△ABC,AD⊥BC,E为AB中点.以D为圆心,适当长为半径画弧,交DE于点M,交DB于点N,分别以M、N为圆心,大于MN为半径画弧,两弧交于点P,作射线DP交AB于点G.过点E作EF∥BC交射线DP于点F,连接BF、AF.
(1)求证:四边形BDEF是菱形.
(2)若AC=4,求△AFD的面积.
21.(10分)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.
等级
周平均读书时间t(单位;小时)
人数
A
0≤t<1
4
B
1≤t<2
a
C
2≤t<3
20
D
3≤t<4
15
E
t≥4
5
(1)求统计图表中a= ,m= .
(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为 .
(3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.
22.(10分)如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC于点E,交BA延长线于点F.
(1)求证:DF是⊙O的切线.
(2)若CE=,CD=2,求图中阴影部分的面积(结果用π表示).
23.(12分)如图,正比例函数y=kx(k≠0)与反比例函数y=(m≠x)的图象交于A、B两点,A的横坐标为﹣4,B的纵坐标为﹣6.
(1)求反比例函数的表达式.
(2)观察图象,直接写出不等式kx<的解集.
(3)将直线AB向上平移n个单位,交双曲线于C、D两点,交坐标轴于点E、F,连接OD、BD,若△OBD的面积为20,求直线CD的表达式.
24.(12分)综合与实践.
(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.
①∠BOC的度数是 .
②BD:CE= .
(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.
①∠AOB的度数是 ;
②AD:BE= .
(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.
①说明△MND为等腰三角形.
②求∠MND的度数.
25.(14分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0)和B(0,3),其顶点的横坐标为1.
(1)求抛物线的表达式.
(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当m取何值时,使得AN+MN有最大值,并求出最大值.
(3)若点P为抛物线y=ax2+bx+c(a≠0)的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点.在(2)的条件下求得的点M,是否能与A、P、Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.
2023年四川省巴中市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)
1.(4分)下列各数为无理数的是( )
A.0.618 B. C. D.
【分析】明确无理数是无限不循环小数;有理数分为整数和分数.
【解答】解:∵=﹣3,
∴0.618;;均为有理数,是无理数.
故选:C.
【点评】本题考查实数的分类,明确无理数是无限不循环小数;有理数分为整数和分数.题目难度较小,多为考卷中第一题.
2.(4分)如图所示图形中为圆柱的是( )
A. B.
C. D.
【分析】根据圆柱的特点进行判断即可.
【解答】解:由圆柱的特征可知,B选项是圆柱.
故选:B.
【点评】本题主要考查的是认识立体图形,认识常见几何图形是解题的关键.
3.(4分)下列运算正确的是( )
A.x2+x3=x5 B.×=
C.(a﹣b)2=a2﹣b2 D.|m|=m
【分析】根据二次根式的乘法、合并同类项、完全平方公式、绝对值的性质计算,判断即可.
【解答】解:A、x2与x3,不是同类项,不能合并,故本选项计算错误,不符合题意;
B、×=,计算正确,符合题意;
C、(a﹣b)2=a2﹣2ab+b2,故本选项计算错误,不符合题意;
D、当m≥0时,|m|=m,故本选项计算错误,不符合题意;
故选:B.
【点评】本题考查的是二次根式的乘法、合并同类项、完全平方公式、绝对值的性质,掌握相关的运算法则和性质是解题的关键.
4.(4分)下列说法正确的是( )
A.多边形的外角和为360°
B.6a2b﹣2ab2=2ab(3a﹣2b)
C.525000=5.25×103
D.可能性很小的事情是不可能发生的
【分析】根据多边形的外角和等于360°,提公因式法分解因式,科学记数法的方法以及随机事件的定义逐一分析解答即可.
【解答】解:A、多边形的外角和等于360°,故选项符合题意;
B、6a2b﹣2ab2=2ab(3a﹣b),故选项不符合题意;
C、525000=5.25×105,故选项不符合题意;
D、可能性很小的事情是有可能发生的,故选项不符合题意.
故选:A.
【点评】本题考查了多边形的外角和定理,提公因式法分解因式,科学记数法以及随机事件的定义,熟练掌握相关的定理以及定义是解题的关键.
5.(4分)一次函数y=(k﹣3)x+2的函数值y随x增大而减小,则k的取值范围是( )
A.k>0 B.k<0 C.k>3 D.k<3
【分析】根据一次函数y=(k﹣3)x+2的函数值y随x增大而减小得到k﹣3<0,从而求出k的取值范围.
【解答】解:∵一次函数y=(k﹣3)x+2的函数值y随x增大而减小,
∴k﹣3<0,
∴k<3,
故选:D.
【点评】本题主要考查了一次函数图象的性质,熟知:对于一次函数y=kx+b(k,b为常数,k≠0),当k>0,y随x增大而增大;当k<0时,y随x增大而减小.
6.(4分)某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是( )
A.传 B.承 C.文 D.化
【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“红”字所在面相对的面上的汉字.
【解答】解:根据图示知:“传”与“文”相对;
“承”与“色”相对;
“红”与“化”相对.
故选:D.
【点评】本题考查灵活运用正方体的相对面解答问题,解决本题的关键是根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点.
7.(4分)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为( )
A.5 B.7 C.10 D.﹣13
【分析】首先将已知条件转化为x2+3x=5,再利用提取公因式将2x2+6x﹣3转化为2(x2+3x)﹣3,然后整体代入即可得出答案.
【解答】解:∵x2+3x﹣5=0,
∴x2+3x=5,
∴2x2+6x﹣3=2(x2+3x)﹣3=2×5﹣3=7.
故选:B.
【点评】此题主要考查了因式分解的应用,解答此题的关键是熟练掌握提取公因式,整体代入求值.
8.(4分)如图,⊙O是△ABC的外接圆,若∠C=25°,则∠BAO=( )
A.25° B.50° C.60° D.65°
【分析】由圆周角定理求得∠AOB的度数,再根据等腰三角形的两个底角相等和三角形的内角和定理可得结论.
【解答】解:连接OB,
∵∠C=25°,
∴∠AOB=2∠C=50°,
∵OA=OB,
∴∠BAO=∠ABO==65°.
故选:D.
【点评】本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.
9.(4分)某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
A.6 B.8 C.12 D.16
【分析】设用x张卡纸做侧面,用y张卡纸做底面,则做出侧面的数量为2x个,底面的数量为3y个,然后根据等量关系:底面数量=侧面数量的2倍,列出方程组即可.
【解答】解:设用x张卡纸做侧面,用y张卡纸做底面,
由题意得,,
解得 ,
∴用6张卡纸做侧面,用8张卡纸做底面,则做出侧面的数量为12个,底面的数量为24个,这些卡纸最多可以做成包装盒的个数为12个.
故选:C.
【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.还需注意本题的等量关系是:底面数量=侧面数量的2倍.
10.(4分)如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
【分析】连接DE,由D、E分别为AC、BC中点,可得DE=AB=3cm,DE∥AB,即得△DEF∽△BAF,故=()2=,==,可得S△ABF=S△ABE=×AB•BE=8(cm2),故S△DEF=S△ABF=2(cm2),又S△DEC=DE•CE=6(cm2),DG:GC=1:2,可得S△DEG=S△DEC=2(cm2),从而S四边形DFGE=S△DEF+S△DEG=4(cm2),
【解答】解:连接DE,如图:
∵D、E分别为AC、BC中点,
∴DE是△ABC的中位线,
∴DE=AB=3cm,DE∥AB,
∴△DEF∽△BAF,
∴=()2=,==,
∴==,
∴S△ABF=S△ABE=×AB•BE=××6××8=8(cm2),
∴S△DEF=S△ABF=2(cm2),
∵S△DEC=DE•CE=×3×4=6(cm2),DG:GC=1:2,
∴S△DEG=S△DEC=2(cm2),
∴S四边形DFGE=S△DEF+S△DEG=4(cm2),
∴四边形DFEG的面积为4cm2,
故选:B.
【点评】本题考查相似三角形判定与性质,三角形中位线及应用,解题的关键是掌握相似三角形的性质及应用.
11.(4分)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给出了(a+b)n展开式的系数规律.
当代数式x4﹣12x3+54x2﹣108x+81的值为1时,则x的值为( )
A.2 B.﹣4 C.2或4 D.2或﹣4
【分析】观察题中的图表,表示出(a+b)4,根据已知代数式的值为1,确定出x的值即可.
【解答】解:根据题意得:(a+b)4=a4+4a3b+6a2b2+4ab3+b4,
∴x4﹣12x3+54x2﹣108x+81
=x4+4x3•(﹣3)+6x2•(﹣3)2+4x•(﹣3)3+(﹣3)4
=(x﹣3)4,
∴(x﹣3)4=1,
开四次方得:x﹣3=1或x﹣3=﹣1,
解得:x=2或4.
故选:C.
【点评】此题考查了完全平方公式,以及数学常识,弄清杨辉三角中的展开式规律是解本题的关键.
12.(4分)在平面直角坐标系中,直线y=kx+1与抛物线y=x2交于A、B两点,设A(x1,y1),B(x2,y2),则下列结论正确的个数为( )
①x1•x2=﹣4.
②y1+y2=4k2+2.
③当线段AB长取最小值时,则△AOB的面积为2.
④若点N(0,﹣1),则AN⊥BN.
A.1 B.2 C.3 D.4
【分析】由题意,将问题转化成一元二次方程问题去解决即可得解.
【解答】解:由题意得x1,x2满足方程x2﹣kx﹣1=0;y1,y2满足方程y2﹣(2+4k2)y+1=0.
依据根与系数的关系得,x1+x2=4k,x1•x2=﹣4,y1+y2=4k2+2,y1•y2=1,
∴①、②正确.
由两点间距离公式得,AB===4(k2+1).
∴当k=0时,AB最小值为4.
∴S△AOB=×1×AB=2.
∴③正确.
由题意,kAN=,kBN=,
∴kAN•kBN=•===﹣k2﹣1.
∴当k=0时,AN⊥BN;当k≠0是,AN与BN不垂直.
∴④错误.
故选:C.
【点评】本题主要考查了二次函数的图象与一次函数图象的交点问题,解题时要能将问题转化成一元二次方程问题解决是关键.
二、填空题(本大题共6个小题,每小题3分,共18分.将正确答案直接写在答题卡相应的位置上)
13.(3分)在0,(﹣)2,﹣π,﹣2四个数中,最小的实数是 ﹣π .
【分析】先计算,然后根据实数的大小比较法则比较各个实数即可得出最小的实数.
【解答】解:,
∵,
即,
∴最小的实数是﹣π,
故答案为:﹣π.
【点评】本题考查了实数的大小比较.熟知:正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.
14.(3分)已知a为正整数,点P(4,2﹣a)在第一象限中,则a= 1 .
【分析】根据平面直角坐标系中第一象限内的点的横、纵坐标都为正数,得到2﹣a>0,即可求出a的取值范围,再根据a为正整数即可得到a的值.
【解答】解:∵点P(4,2﹣a)在第一象限,
∴2﹣a>0,
∴a<2,
又a为正整数,
∴a=1.
故答案为:1.
【点评】本题主要考查了平面直角坐标系中点的坐标特征,熟知:第一象限内的点的坐标特征是(+,+),第二象限内的点的坐标特征是(﹣,+),第三象限内的点的坐标特征是(﹣,﹣),第四象限内的点的坐标特征是(+,﹣).
15.(3分)这组数据1,3,5,2,8,13的中位数是 4 .
【分析】先将这组数据从小到大重新排列,再根据中位数的定义求解即可.
【解答】解:将这组数据重新排列为1,2,3,5,8,13,
所以这组数据的中位数为×(3+5)=4,
故答案为:4.
【点评】本题考查了中位数的知识,属于基础题,解答本题的关键是熟练掌握中位数的定义.
16.(3分)关于x的分式方程+=3有增根,则m= ﹣1 .
【分析】先去分母,再根据增根的意义列方程求解.
【解答】解:方程两边同乘(x﹣2)得:x+m﹣1=3(x﹣2),
由题意得:x=2是该整式方程的解,
∴2+m﹣1=0,
解得:m=﹣1,
故答案为:﹣1.
【点评】本题考查了分式方程的增根,理解增根的意义是解题的关键.
17.(3分)如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点H,tan∠ABG=,正方形ABCD的边长为8,则BH的长为 10 .
【分析】根据同角的余角相等可得∠DGH=∠ABG,进而得到tan∠DGH=tan∠ABG=,在Rt△ABG中,AG=AB•tan∠ABG=4,于是可求得=,DG=4,在Rt△DGH中,DH=DG•tan∠DGH=2,于是可求得GH==,在Rt△BGH中,利用勾股定理即可求解.
【解答】解:∵四边形ABCD、BEFG均为正方形,
∴∠A=∠BGF=∠D=90°,
∴∠AGB+∠DGH=90°,
∵∠AGB+∠ABG=90°,
∴∠DGH=∠ABG,
∴tan∠DGH=tan∠ABG=,
∵正方形ABCD的边长为8,
∴AB=AD=8,
在Rt△ABG中,AG=AB•tan∠ABG=8×=4,
∴==,
∴DG=AD﹣AG=4,
在Rt△DGH中,DH=DG•tan∠DGH==2,
∴GH===,
在Rt△BGH中,==10.
故答案为:10.
【点评】本题主要考查正方形的性质、解直角三角形、勾股定理,利用同角的余角相等推出∠DGH=∠ABG,再根据锐角三角函数和勾股定理求出相应线段的长度是解题关键.
18.(3分)规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=﹣x+3互为“Y函数”.若函数y=x2+(k﹣1)x+k﹣3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为 (3,0)或(4,0) .
【分析】根据关于y轴对称的图形的对称点的坐标特点,分情况讨论求出它的“Y函数”图象与x轴的交点坐标.
【解答】解:当k=0时,函数解析式为y=﹣x﹣3,
它的“Y函数”解析式为y=x﹣3,它们的图象与x轴都只有一个交点,
∴它的“Y函数”图象与x轴的交点坐标为(3,0);
当k≠0时,此函数为二次函数,
若二次函数的图象与x轴只有一个交点,
则二次函数的顶点在x轴上,
即,
解得k=﹣1,
∴二次函数的解析式为=,
∴它的“Y函数”解析式为,
令y=0,
则,
解得x=4,
∴二次函数的“Y函数”图象与x轴的交点坐标为(4,0),
综上,它的“Y函数”图象与x轴的交点坐标为(3,0)或(4,0).
故答案为:(3,0)或(4,0).
【点评】本题考查了新定义,二次函数与x轴的交点坐标,坐标与图形变换﹣﹣﹣﹣轴对称,求一次函数解析式和二次函数解析式,理解题意,采用分类讨论的思想是解题的关键.
三、解答题(本大题共7个小题,共84分.请将解答过程写在答题卡相应的位置上)
19.(16分)(1)计算:|3﹣|+()﹣1﹣4sin60°+()2.
(2)求不等式组的解集.
(3)先化简,再求值(+x﹣1)÷,其中x的值是方程x2﹣2x﹣3=0的根.
【分析】(1)根据绝对值的定义,负整数指数幂,特殊角的三角函数,计算即可;
(2)根据不等式组的解法解不等式组即可;
(3)根据整式的混合运算化简后代入x的值计算即可.
【解答】解:(1)|3﹣|+()﹣1﹣4sin60°+()2
=2﹣3+3﹣4×+2
=2﹣2+2
=2;
(2)解不等式①得,x<2;
解不等式②得,x≥﹣3,
∴原不等式组的解集为﹣3<x≤2;
(3)(+x﹣1)÷
=
=x+1,
解方程x2﹣2x﹣3=0得x1=3,x2=﹣1,
∵x2(x+1)2≠0,
∴x≠0,x≠﹣1,
∴x=3,
∴原式=3+1=4.
【点评】本题考查了一元二次方程的解,实数的运算,分式的化简和求值,解一元一次不等式,正确地进行运算是解题的关键.
20.(10分)如图,已知等边△ABC,AD⊥BC,E为AB中点.以D为圆心,适当长为半径画弧,交DE于点M,交DB于点N,分别以M、N为圆心,大于MN为半径画弧,两弧交于点P,作射线DP交AB于点G.过点E作EF∥BC交射线DP于点F,连接BF、AF.
(1)求证:四边形BDEF是菱形.
(2)若AC=4,求△AFD的面积.
【分析】(1)根据等边三角形的性质得到D是BC的中点,求得△BED是等边三角形,得到BE=BD=DE,由作图知,DF平分∠EDB,根据角平分线的定义得到∠EDF=∠FDB,根据平行线的性质得到∠EFD=∠FDB,求得∠EFD=∠RDF,推出四边形BDEF是平行四边形,根据菱形的判定定理即可得到结论;
(2)根据等边三角形的性质得到∠C=60°,∠ADC=90°,∠BAD=30°,根据菱形的性质得到AG⊥FD,FG=GD,根据三角形的面积公式即可得到结论.
【解答】(1)证明:∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∵AD⊥BC,
∴BD=BC=AB,
∵E为AB中点.
∴,
∴BD=DE,
∴△BED是等边三角形,
∴BE=BD=DE,
由作图知,DF平分∠EDB,
∴∠EDF=∠FDB,
∵EF∥BC,
∴∠EFD=∠FDB,
∴∠EFD=∠EDF,
∴EF=ED,
∴EF∥BD,
∴四边形BDEF是平行四边形,
∵DE=BD,
∴四边形BDEF是菱形;
(2)解:∵△ABC是等边三角形,AD⊥BC,
∴∠C=60°,∠ADC=90°,∠BAD=30°,
∵AC=4,
∴=2,
∵四边形BDEF是菱形,
∴AG⊥FD,FG=GD,
在Rt△AGD中,∵∠BAD=30°,
∴,
∴,
∴.
【点评】本题考查了作图﹣基本作图,角平分线的定义,菱形的判定,解直角三角形,平行四边形的判定和性质等边三角形的性质,熟练掌握菱形的判定定理是解题的关键.
21.(10分)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A、B、C、D、E五个等级并绘制成表格和扇形统计图如下.
等级
周平均读书时间t(单位;小时)
人数
A
0≤t<1
4
B
1≤t<2
a
C
2≤t<3
20
D
3≤t<4
15
E
t≥4
5
(1)求统计图表中a= 6 ,m= 40 .
(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为 1120人 .
(3)该校每月末从每个班读书时间在E等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率.
【分析】(1)先根据D等级人数及其所占百分比求出样本容量,再根据各等级人数之和等于总人数可求得a的值,用C等级人数除以总人数看求得m的值;
(2)用总人数乘以样本中D、E组人数和占被调查人数的比例即可得出答案;
(3)列表得出所有等可能结果,从表格中找到选出1名男生1名女生参加交流会的结果,再根据概率公式列式计算即可.
【解答】解:(1)∵样本容量为15÷30%=50,
∴a=50﹣(4+20+15+5)=6,
m%=×100%=40%,即m=40,
故答案为:6,40;
(2)估计该校每周读书时间至少3小时的人数为2800×=1120(人),
故答案为:1120人;
(3)根据题意列表如下:
男1
男2
男3
女
男1
﹣﹣
男2男1
男3男1
女男1
男2
男1男2
﹣﹣
男3男2
女男2
男3
男1男3
男2男3
﹣﹣
女男3
女
男1女
男2女
男3女
﹣﹣
由表格可知,共有12种等可能出现的结果,其中该班恰好选出1名男生1名女生参加交流会的结果有6种,
所以该班恰好选出1名男生1名女生参加交流会的概率为=.
【点评】此题考查的是用列表法求概率以及频数分布表、扇形统计图等知识.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
22.(10分)如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC于点E,交BA延长线于点F.
(1)求证:DF是⊙O的切线.
(2)若CE=,CD=2,求图中阴影部分的面积(结果用π表示).
【分析】(1)连接OD,根据等腰三角形的性质证明AC∥OD,进而可以得到结论;
(2)连接AD,根据勾股定理求出ED=1,根据锐角三角函数可得∠AOD=60°,然后证明OD是△ABC的中位线,求出r=,根据阴影部分的面积=四边形AODE的面积﹣扇形AOD的面积,代入值即可.
【解答】(1)证明:如图,连接OD,
∵AB=AC,
∴∠B=∠C,
∵OB=OD,
∴∠B=∠ODB,
∴∠ODB=∠C,
∴AC∥OD,
∵DF⊥AC,
∴OD⊥DF,
∵OD是⊙O的半径,
∴DF是⊙O的切线;
(2)解:如图,连接AD,
设⊙O的半径为r,
在Rt△CED中,CE=,CD=2,
∴ED2=CD2﹣CE2=4﹣3=1,
∴ED=1,
∵cos∠C==,
∴∠C=30°,
∴∠B=30°,
∴∠AOD=60°,
∵AC∥OD,O为AB的中点,
∴OD是△ABC的中位线,
∴D是BC中点,
∴CD=BD=2,
∵AB是⊙O的的直径,
∴∠ADB=90°,
∴AD=AB=r,
∴BD=AD=r=2,
∴r=,
∴AB=2r=,
∴AE=AC﹣CE=AB﹣=﹣=,
∴阴影部分的面积=四边形AODE的面积﹣扇形AOD的面积
=(+)×1﹣π×()2
=﹣.
【点评】本题考查了切线的判定和性质,等腰三角形的性质,三角形中位线定理,圆周角定理,扇形面积计算等知识点,能综合运用定理进行推理是解此题的关键.
23.(12分)如图,正比例函数y=kx(k≠0)与反比例函数y=(m≠x)的图象交于A、B两点,A的横坐标为﹣4,B的纵坐标为﹣6.
(1)求反比例函数的表达式.
(2)观察图象,直接写出不等式kx<的解集.
(3)将直线AB向上平移n个单位,交双曲线于C、D两点,交坐标轴于点E、F,连接OD、BD,若△OBD的面积为20,求直线CD的表达式.
【分析】(1)利用利用反比例函数中心对称性,可求出A、B的坐标,进而可求出反比例函数的表达式;
(2)观察函数图象,根据两函数图象的上下位置关系,找出不等式kx<的解集;
(3)方法一:连接BE,作BG⊥y轴于点G,求得直线AB的解析式,根据平行线间的距离相等得出S△OBD=S△OBE=20,即可求得OE=10,从而求得直线CD为y=﹣x+10.
方法二:连接BF,作BH⊥x轴于H,求得直线AB的解析式,根据平行线间的距离相等得出S△OBD=S△OBF=20,即可求得F(,0),从而求得直线CD为y=﹣x+10.
【解答】解:(1)∵正比例函数y=kx(k≠0)与反比例函数y=(m≠x)的图象交于A、B两点,
∴A、B关于原点对称,
∵A的横坐标为﹣4,B的纵坐标为﹣6,
∴A(﹣4,6),B(4,﹣6),
∵点A(﹣4,6)在反比例函数y=(m≠x)的图象上,
∴6=,
∴m=﹣24,
∴反比例函数的表达式为y=﹣;
(2)观察函数图象,可知:当﹣4<x<0或x>4时,正比例函数y=kx的图象在反比例函数y=(m≠x)的图象下方,
∴不等式kx<的解集为﹣4<x<0或x>4;
(3)方法一:连接BE,作BG⊥y轴于点G,
∵A(﹣4,6)在直线y=kx上,
∴6=﹣4k,解得k=﹣,
∴直线AB的表达式为y=﹣x,
∵CD∥AB,
∴S△OBD=S△OBE=20,
∵B(4,﹣6),
∴BG=4,
∴S△OBE==20,
∴OE=10,
.E(0,10),
∴直线CD为y=﹣x+10.
方法二:
连接BF,作BH⊥x轴于H,
∵A(﹣4,6)在直线y=kx上,
∴k=﹣,
∴直线AB的表达式为y=﹣x,
∵CD∥AB,
∴S△OBD=S△OBF=20,
∵B(4,﹣6),
∴OF•6=20,
∴OF=,
∴F(,0),
设直线CD的表达式为y=﹣x+b,
代入F点的坐标得,﹣×+b=0
解得b=10,
∴直线CD为y=﹣x+10.
【点评】本题是反比例函数与一次函数的交点问题,考查了反比例函数的对称性,待定系数法求一次函数和反比例函数的解析式,平行线间的距离相等,三角形的面积,根据三角形面积求得E、F点的坐标是解题的关键.
24.(12分)综合与实践.
(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.
①∠BOC的度数是 90° .
②BD:CE= 1:1 .
(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.
①∠AOB的度数是 45° ;
②AD:BE= 1: .
(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.
①说明△MND为等腰三角形.
②求∠MND的度数.
【分析】(1)(2)从图形可辩知,这个是手拉手全等或相似模型,按模型的相关结论解题.
(3)稍有变化,受前两问的启发,连接BF、CE完成手拉手的构造,再结合三角形中位线知识解题.
【解答】解:(1)①∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠BAD=∠CAE.
又∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS).
∴∠ABD=∠ACE,
∵∠BAC=90°,
∴∠ABC+∠ACB=∠ABD+∠OBC+∠ACB=90°,
∴∠ACE+∠OBC+∠ACB=90°,
即:∠BCE+∠OBC=90°,
∴∠BOC=90°.
故∠BOC的度数是90°.
②由①得△BAD≌△CAE,
∴BD=CE.
故BD:CE=1:1.
(2)①∵AB=AC,DE=DC,
∴,
又∵∠BAC=∠EDC=90°,
∴△ABC∽△DEC,
∴∠ACB=∠DCB,.
∴∠ACE+∠ECB=∠DCA+∠ACE,
∴∠ECB=∠DCA.
∴△ECB∽△DCA,
∴∠CBE=∠CAD,
∴∠AOB=180°﹣∠ABO﹣∠BAO=180°﹣∠ABO﹣∠CAD﹣∠BAC=180°﹣∠ABO﹣∠CBE﹣90°=180°﹣45°﹣90°=45°.
故∠AOB 的度数是45°.
②由①得:△ECB∽△DCA.
∴AD:BE=DC:EC,
∵∠EDC=90°,且DE=DC,
∴∠DCE=45°,
∴=cos45°=.
∴.
(3)①解:连接BF、CE,延长CE交MN于点P,交BF于点O.
在等边△ABC中AB=AC,又∵AD⊥BC于点D,
∴D为BC的中点,
又∵M为EF的中点,N为BE的中点,
∴MN、ND分别是在△BEF、△BCE的中位线,
∴MN=BF,DN=EC.
∵∠FAE=∠BAC=60°,
∴∠FAE+∠EAB=∠BAC+∠EAB.
∴∠FAB=∠EAC.
在△ACE和△ABF中,
,
∴△ACE≌△ABF(SAS).
∴BF=EC.
∴MN=DN.
∴△MND为等腰三角形.
②∵△ACE≌△ABF,
∴∠ACE=∠ABF,
由(1)(2)规律可知:∠BOC=60°,
∴∠FOC=180°﹣∠BOC=180°﹣60°=120°,
又∵BF∥MN,CP∥DN,
∴∠MND=∠MPE=∠FOC=120°.
【点评】本题考查了全等三角形的判定与性质及相似三角形的判定及性质.方法灵活多变,需要较强的构造能力.
25.(14分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0)和B(0,3),其顶点的横坐标为1.
(1)求抛物线的表达式.
(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当m取何值时,使得AN+MN有最大值,并求出最大值.
(3)若点P为抛物线y=ax2+bx+c(a≠0)的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点.在(2)的条件下求得的点M,是否能与A、P、Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.
【分析】(1)由抛物线顶点横坐标,可得出抛物线的对称轴为直线x=1,结合点A的坐标,可得出抛物线与x轴另一交点的坐标,结合点B的坐标,再利用待定系数法,即可求出抛物线的表达式;
(2)由“直线x=m与x轴交于点N,在第一象限内与抛物线交于点M”,可得出点M,N的坐标,进而可得出AN,MN的值,代入AN+MN中,可得出AN+MN=﹣(m﹣)2+,再利用二次函数的性质,即可解决最值问题;
(3)利用平移的性质,可得出平移后抛物线的表达式为y=﹣x2+4,利用二次函数图象上点的坐标特征,可求出点M的坐标,假设存在以A,P,Q,M为顶点的平行四边形,设点P的坐标为(1,m),点Q的坐标为(n,﹣n2+4),分AM为对角线、AP为对角线及AQ为对角线三种情况考虑,由平行四边形的对角线互相平分,可得出关于n的一元一次方程,解之可得出n值,再将其代入点Q的坐标中,即可得出结论.
【解答】解:(1)∵抛物线的顶点横坐标为1,
∴抛物线的对称轴为直线x=1.
∵点A的坐标为(﹣1,0),
∴抛物线与x轴的另一交点坐标为(3,0).
将(﹣1,0),(3,0),(0,3)代入y=ax2+bx+c得:,
解得:,
∴抛物线的表达式为y=﹣x2+2x+3;
(2)∵直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,
∴点M的坐标为(m,﹣m2+2m+3),点N的坐标为(m,0),
∴MN=﹣m2+2m+3,AN=m+1,
∴AN+MN=m+1+(﹣m2+2m+3)=﹣m2+3m+4=﹣(m﹣)2+,
∵﹣1<0,且0<m<3,
∴当m=时,AN+MN有最大值,最大值为;
(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线向左平移1个单位长度后的表达式为y=﹣x2+4.
当x=时,y=﹣()2+2×+3=,
∴点M的坐标为(,).
假设存在以A,P,Q,M为顶点的平行四边形,设点P的坐标为(1,m),点Q的坐标为(n,﹣n2+4).
①当AM为对角线时,对角线AM,PQ互相平分,
∴=,
解得:n=﹣,
∴点Q的坐标为(﹣,);
②当AP为对角线时,对角线AP,MQ互相平分,
∴=,
解得:n=﹣,
∴点Q的坐标为(﹣,);
③当AQ为对角线时,对角线AQ,PM互相平分,
∴=,
解得:n=,
∴点Q的坐标为(,﹣).
综上所述,存在以A,P,Q,M为顶点的平行四边形,点Q的坐标为(﹣,)或(﹣,)或(,﹣).
【点评】本题考查了二次函数图象上点的坐标特征、待定系数法求二次函数解析式、二次函数的性质以及平行四边形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的表达式;(2)利用二次函数的性质,求出AN+MN的最大值;(3)利用平行四边形的性质(对角线互相平分),找出关于n的一元一次方程.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/6/22 17:12:32;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557
相关试卷
这是一份2023年四川省巴中市中考数学试卷(含答案解析),共23页。试卷主要包含了 下列各数为无理数的是,618B, 如图所示图形中为圆柱的是, 下列运算正确的是, 下列说法正确的是,25×103D等内容,欢迎下载使用。
这是一份2023年四川省巴中市中考数学试卷附解析,共36页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年四川省巴中市中考数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。