统考版2024版高考数学一轮复习微专题小练习专练66高考大题专练六概率与统计的综合运用理
展开专练66 高考大题专练(六) 概率与统计的综合运用
1.[2022·全国甲卷(理),19]甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
2.[2023·全国甲卷(理)]一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).
(1)设X表示指定的两只小白鼠中分配到对照组的只数,求X的分布列和数学期望.
(2)试验结果如下:
对照组的小白鼠体重的增加量从小到大排序为
15.2 18.8 20.2 21.3 22.5 23.2
25.8 26.5 27.5 30.1 32.6 34.3
34.8 35.6 35.6 35.8 36.2 37.3
40.5 43.2
试验组的小白鼠体重的增加量从小到大排序为
7.8 9.2 11.4 12.4 13.2 15.5
16.5 18.0 18.8 19.2 19.8 20.2
21.6 22.8 23.6 23.9 25.1 28.2
32.3 36.5
(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表:
| <m | ≥m |
对照组 |
|
|
试验组 |
|
|
(ⅱ)根据(ⅰ)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
附:K2=,
P(K2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
.
3.[2022·全国乙卷(理),19]某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:
样本号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 总和 |
根部横截 |
|
|
|
|
|
|
|
|
|
|
|
面积xi | 0.04 | 0.06 | 0.04 | 0.08 | 0.08 | 0.05 | 0.05 | 0.07 | 0.07 | 0.06 | 0.6 |
材积量yi | 0.25 | 0.40 | 0.22 | 0.54 | 0.51 | 0.34 | 0.36 | 0.46 | 0.42 | 0.40 | 3.9 |
并计算得=0.038,=1.615 8,iyi=0.247 4.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186 m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数r=,≈1.377.
4.[2023·全国乙卷(理)]某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10).试验结果如下:
试验序号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
伸缩率xi | 545 | 533 | 551 | 522 | 575 | 544 | 541 | 568 | 596 | 548 |
伸缩率yi | 536 | 527 | 543 | 530 | 560 | 533 | 522 | 550 | 576 | 536 |
记zi=xi-yi(i=1,2,…,10),记z1,z2,…,z10的样本平均数为,样本方差为s2.
(1)求,s2;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果≥2,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).
专练66 高考大题专练(六)
概率与统计的综合运用
1.解析:(1)设三个项目比赛中甲学校获胜分别为事件A,B,C,易知事件A,B,C相互独立.甲学校获得冠军,对应事件A,B,C同时发生,或事件A,B,C中有两个发生,故甲学校获得冠军的概率为
P=P(ABC+BC+AC+AB)
=P(ABC)+P(BC)+P(AC)+P(AB)
=0.5×0.4×0.8+(1-0.5)×0.4×0.8+0.5×(1-0.4)×0.8+0.5×0.4×(1-0.8)
=0.16+0.16+0.24+0.04
=0.6.
(2)由题意得,X的所有可能取值为0,10,20,30.
易知乙学校在三个项目中获胜的概率分别为0.5,0.6,0.2,则
P(X=0)=(1-0.5)×(1-0.6)×(1-0.2)=0.16,
P(X=10)=0.5×(1-0.6)×(1-0.2)+(1-0.5)×0.6×(1-0.2)+(1-0.5)×(1-0.6)×0.2=0.44,
P(X=20)=0.5×0.6×(1-0.2)+0.5×(1-0.6)×0.2+(1-0.5)×0.6×0.2=0.34,
P(X=30)=0.5×0.6×0.2=0.06,
所以X的分布列为
X | 0 | 10 | 20 | 30 |
P | 0.16 | 0.44 | 0.34 | 0.06 |
则E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.
2.解析:(1)X的所有可能取值为0,1,2,
P(X=0)=C××=,P(X=1)=C××=,P(X=2)=C××=, 所以X的分布列为
X | 0 | 1 | 2 |
P |
E(X)=0×+1×+2×=1.
(2)(ⅰ)根据试验数据可以知道40只小白鼠体重增加量的中位数m==23.4.
列联表如下:
| <m | ≥m |
对照组 | 6 | 14 |
试验组 | 14 | 6 |
(ⅱ)根据(ⅰ)中结果可得K2==6.4>3.841,
所以有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.
3.解析:(1)该林区这种树木平均一棵的根部横截面积==0.06(m2),
平均一棵的材积量==0.39(m3).
(2)由题意,得 (xi-)2=x-102=0.038-10×0.062=0.002,
(yi-)2=y-102=1.615 8-10×0.392=0.094 8,
(xi-)(yi-)=xiyi-10=0.247 4-10×0.06×0.39=0.013 4,
所以相关系数r==≈≈0.97.
(3)因为树木的材积量与其根部横截面积近似成正比,所以比例系数k===6.5,
所以该林区这种树木的总材积量的估计值为186×6.5=1 209(m3).
4.解析:(1)由题意,求出zi的值如表所示,
试验序号i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
zi | 9 | 6 | 8 | -8 | 15 | 11 | 19 | 18 | 20 | 12 |
则z=×(9+6+8-8+15+11+19+18+20+12)=11,
s2=×[(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+(11-11)2+(19-11)2+(18-11)2+(20-11)2+(12-11)2]=61.
(2)因为2=2=,=11=>,
所以可认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
统考版2024版高考数学一轮复习微专题小练习专练57高考大题专练六概率与统计的综合运用文: 这是一份统考版2024版高考数学一轮复习微专题小练习专练57高考大题专练六概率与统计的综合运用文,共4页。试卷主要包含了[2023·全国甲卷,2 18,8 9,8 20,[2023·全国乙卷,4>3等内容,欢迎下载使用。
统考版2024版高考数学一轮复习微专题小练习专练43高考大题专练四立体几何的综合运用文: 这是一份统考版2024版高考数学一轮复习微专题小练习专练43高考大题专练四立体几何的综合运用文,共6页。
统考版2024版高考数学一轮复习微专题小练习专练32高考大题专练三数列的综合运用文: 这是一份统考版2024版高考数学一轮复习微专题小练习专练32高考大题专练三数列的综合运用文,共4页。试卷主要包含了解析等内容,欢迎下载使用。

