2024年高考物理一轮复习(新人教版) 第6章 专题强化8 动能定理在多过程问题中的应用
展开动能定理在多过程问题中的应用
1.会用动能定理解决多过程、多阶段的问题.2.掌握动能定理在往复运动问题中的应用.
题型一 动能定理在多过程问题中的应用
题型二 动能定理在往复运动问题中的应用
1.应用动能定理解决多过程问题的两种思路(1)分阶段应用动能定理①若题目需要求某一中间物理量,应分阶段应用动能定理.②物体在多个运动过程中,受到的弹力、摩擦力等力若发生了变化,力在各个过程中做功情况也不同,不宜全过程应用动能定理,可以研究其中一个或几个分过程,结合动能定理,各个击破.(2)全过程(多个过程)应用动能定理当物体运动过程包含几个不同的物理过程,又不需要研究过程的中间状态时,可以把几个运动过程看作一个整体,巧妙运用动能定理来研究,从而避开每个运动过程的具体细节,大大简化运算.
2.全过程列式时要注意(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.
例1 图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,长为s,BC段是与AB段和CD段都相切的一小段圆弧,其长度可以忽略不计.一质量为m的小滑块在A点由静止释放,沿轨道滑下,最后停在D点,A点和D点的位置如图所示,现用一沿轨道方向的力推滑块,使它缓缓地由D点回到A点,设滑块与轨道间的动摩擦因数为μ,重力加速度为g,则推力对滑块做的功等于
滑块由A点运动至D点,设克服摩擦力做功为W克fAD,由动能定理得mgh-W克fAD=0,即W克fAD=mgh,①滑块从D点回到A点,由于是缓慢推,说明动能变化量为零,设克服摩擦力做功为W克fDA,由动能定理知,滑块从D点被推回A点过程有WF-mgh-W克fDA=0,②
联立③④得W克fAD=W克fDA, ⑤联立①②⑤得WF=2mgh,故A、C、D错误,B正确.
例2 (多选)(2021·全国甲卷·20)一质量为m的物体自倾角为α的固定斜面底端沿斜面向上滑动.该物体开始滑动时的动能为Ek,向上滑动一段距离后速度减小为零,此后物体向下滑动,到达斜面底端时动能为 .已知sin α=0.6,重力加速度大小为g.则
物体从斜面底端回到斜面底端根据动能定理有-μmg·2lcs α= -Ek,物体从斜面底端到最高点根据动能定理有-mglsin α-μmglcs α=0-Ek,整理得l= ,μ=0.5,A错误,C正确;物体向下滑动时根据牛顿第二定律有ma下=mgsin α-μmgcs α,解得a下= ,B正确;
物体向上滑动时根据牛顿第二定律有ma上=mgsin α+μmgcs α,解得a上=g,故a上>a下,由于上滑过程中的末速度为零,下滑过程中的初速度为零,且走过相同的位移,根据位移公式l= at2,则可得出t上
(2)小球在A点时,其对圆形轨道的压力大小;
(3)小球的释放点离水平地面的高度H.
动能定理在往复运动问题中的应用
1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可简化解题过程.
例4 如图所示,固定斜面的倾角为θ,质量为m的滑块从距挡板P的距离为x0处以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,重力加速度为g,则滑块经过的总路程是
滑块最终要停在斜面底部,设滑块经过的总路程为x,对滑块运动的全程应用动能定理得
例5 (2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上.已知可视为质点的滑块质量m=0.1 kg,轨道BCD和DEF的半径R=0.15 m,轨道AB长度lAB=3 m,滑块与轨道FG间的动摩擦因数μ= ,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cs 37°=0.8.滑块开始时均从轨道AB上某点静止释放.
(1)若释放点距B点的长度l=0.7 m,求滑块到最低点C时轨道对其支持力FN的大小;
由①②解得FN=7 N ③
(2)设释放点距B点的长度为lx,求滑块第一次经F点时的速度v与lx之间的关系式;
要保证滑块能到F点,必须能过DEF的最高点,当滑块恰到最高点时根据动能定理可得mgl1sin 37°-(3mgRcs 37°+mgR)=0④解得l1=0.85 m⑤因此要能过F点必须满足lx≥0.85 m⑥能过最高点,则能到F点,由释放到第一次到达F点,根据动能定理可得
(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度lx的值.
设摩擦力做功为第一次到达中点时的n倍
又因为0.85 m≤lx≤lAB,lAB=3 m,
1.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC水平,其长度d=0.50 m,盆边缘的高度为h=0.30 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停止的地点到B的距离为 m m D.0
2.如图所示,一物体由固定斜面上的A点以初速度v0下滑到底端B,它与挡板发生无动能损失的碰撞后又滑回到A点,其速度恰好为零.设A、B两点高度差为h,重力加速度为g,则它与挡板碰前瞬间的速度大小为
3.如图所示,两倾角均为θ的光滑斜面对接后固定在水平地面上,O点为斜面的最低点.一个小物块从右侧斜面上高为H处由静止滑下,在两个斜面上做往复运动.小物块每次通过O点时都会有动能损失,损失的动能为小物块当次到达O点时动能的5%.小物块从开始下滑到停止的过程中运动的总路程为
第一次通过O点后动能Ek1=95%Ek=95%mgH,此时利用动能定理知小物块上升高度H1=95%H,
4.(多选)(2023·江苏省启东中学模拟)如图所示,直杆AB与水平面成α角固定,在杆上套一质量为m的小滑块,杆底端B点处有一弹性挡板,杆与板面垂直,滑块与挡板碰撞后将以原速率返回.现将滑块拉到A点由静止释放,与挡板第一次碰撞后恰好能上升到AB的中点,设重力加速度为g,由此可以确定A.滑块下滑和上滑过程加速度大小a1、a2B.滑块第1次与挡板碰撞前的速度v1C.滑块与杆之间的动摩擦因数μD.滑块第k次与挡板碰撞到第k+1次与挡板碰撞的时间间隔Δt
根据牛顿第二定律得下滑过程:mgsin α-μmgcs α=ma1;上滑过程:mgsin α+μmgcs α=ma2;解得:a1=gsin α-μgcs α,a2=gsin α+μgcs α,所以可求得滑块下滑和上滑过程加速度的大小a1、a2,故A正确;
由于A、B间的距离未知,尽管求出加速度,但不能求出滑块到达挡板时的时间以及与挡板碰撞前的速度,故B、D错误.
5.(2023·河北张家口市高三检测)如图所示,倾角为θ=37°的足够长光滑固定斜面AB与长LBC=2 m的粗糙水平面BC用一小段光滑圆弧(长度不计,未画出)平滑连接,半径R=1.5 m的光滑圆弧轨道CD与水平面相切于C点,OD与水平方向的夹角也为θ=37°.质量为m的小滑块从斜面上距B点L0=2 m的位置由静止开始下滑,恰好运动到C点.已知重力加速度g=10 m/s2,sin 37°=0.6,cs 37°=0.8.(1)求小滑块与粗糙水平面BC间的动摩擦因数μ;答案 0.6
小滑块恰好运动到C点,由动能定理得mgL0sin 37°-μmgLBC=0-0,解得μ=0.6.
(2)改变小滑块从斜面上开始释放的位置,使小滑块能够通过D点,求小滑块的释放位置与B点的最小距离.
设滑块能够通过D点,在D点的最小速度为vD,
设滑块释放位置与B点的最小距离为L,
6.(2021·全国乙卷·24)一篮球质量为m=0.60 kg,一运动员使其从距地面高度为h1=1.8 m处由静止自由落下,反弹高度为h2=1.2 m.若使篮球从距地面h3=1.5 m的高度由静止下落,并在开始下落的同时向下拍球、球落地后反弹的高度也为1.5 m.假设运动员拍球时对球的作用力为恒力,作用时间为t=0.20 s;该篮球每次与地面碰撞前后的动能的比值不变.重力加速度大小取g=10 m/s2,不计空气阻力.求:(1)运动员拍球过程中对篮球所做的功;
篮球从距地面高度h1=1.8 m处自由下落的过程中由动能定理可得Ek1=mgh1篮球反弹后向上运动的过程由动能定理可得0-Ek2=-mgh2篮球从距地面h3=1.5 m的高度由静止下落,同时向下拍球,篮球下落过程中,由动能定理可得W+mgh3=Ek3在篮球反弹上升的过程中,由动能定理可得0-Ek4=0-mgh4
代入数据可得W=4.5 J.
(2)运动员拍球时对篮球的作用力的大小.
因作用力是恒力,在恒力作用下篮球向下做匀加速直线运动,因此由牛顿第二定律可得F+mg=ma,在拍球时间内运动的位移为x= at2做的功为W=Fx联立可得F=9 N(F=-15 N舍去).
7.如图所示,让摆球从图中的C位置由静止开始摆下,摆到最低点D处,摆线刚好被拉断,小球在粗糙的水平面上由D点向右做匀减速运动,到达A孔进入半径R=0.3 m的固定在水平面上竖直放置的光滑圆弧轨道,当摆球进入圆轨道立即关闭A孔.已知摆线长L=2 m,θ=53°,小球质量为m=0.5 kg,D点与A孔的水平距离s=2 m,g取10 m/s2.(sin 53°=0.8,cs 53°=0.6)(1)求摆线能承受的最大拉力为多大;
(2)要使摆球能进入圆轨道并且不脱离轨道,求摆球与粗糙水平面间的动摩擦因数μ的范围.
答案 0.25≤μ≤0.4或者μ≤0.025
要保证小球能到达A孔,设小球到达A孔的速度恰好为零,由动能定理可得
小球不脱离圆轨道分两种情况:①若进入A孔的速度较小,那么将会在圆心所在高度以下做往返运动,不脱离轨道,其临界情况为到达圆心等高处速度为零,
新高考物理一轮复习精品课件第6章专题强化9动能定理在多过程问题中的应用(含解析): 这是一份新高考物理一轮复习精品课件第6章专题强化9动能定理在多过程问题中的应用(含解析),共49页。PPT课件主要包含了内容索引,课时精练,题型一,答案09m,答案7×103N,答案30m,全程应用动能定理,题型二,答案8m,答案145N等内容,欢迎下载使用。
高考物理一轮复习课件+讲义 第6章 专题强化9 动能定理在多过程问题中的应用: 这是一份高考物理一轮复习课件+讲义 第6章 专题强化9 动能定理在多过程问题中的应用,文件包含高考物理一轮复习第6章专题强化9动能定理在多过程问题中的应用pptx、高考物理一轮复习第6章专题强化9动能定理在多过程问题中的应用docx等2份课件配套教学资源,其中PPT共58页, 欢迎下载使用。
新高考物理一轮复习课件 第6章 专题强化9 动能定理在多过程问题中的应用: 这是一份新高考物理一轮复习课件 第6章 专题强化9 动能定理在多过程问题中的应用,共52页。PPT课件主要包含了高考物理一轮复习策略,第六章机械能,内容索引,课时精练等内容,欢迎下载使用。