【小升初】2022-2023学年北京市东城区数学六年级下册期末检测卷(含解析)
展开【小升初】2022-2023年北京市东城区数学六年级下册期末检测卷
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
四
五
六
七
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选一选)
请点击修改第I卷的文字说明
评卷人
得分
一、选一选
1.一个梯形如图,已知阴影部分的面积是12平方厘米,则梯形的面积是( )平方厘米。
A.16 B.18 C.20 D.28
2.一个圆柱和一个圆锥等底等高,若圆锥的高增加18分米,则圆柱和圆锥体积相等,原来圆柱的高是( )分米。
A.4 B.9 C.12 D.6
3.在含盐40%的盐水里,加入40克盐和100克水,这时盐水的含盐率( )。
A.大于40% B.小于40% C.等于40% D.无法比较
4.小刚和小军买了相同价格的文具后,小刚还剩自己零花钱的,小军还剩自己零花钱的75%,小刚和小军两人原来的零花钱相比较,( )。
A.小刚比小军多 B.小军比小刚多 C.一样多 D.无法比较
5.轿车和货车同时从A、B两地出发,相向而行,相遇时轿车行了全程的,那么轿车与货车的速度比是( )。
A.7∶13 B.6∶13 C.7∶6 D.6∶7
6.一个物体的长、宽、高分别是26厘米、18厘米、0.7厘米,这个物体可能是( )。
A.一个文具盒 B.10张作业纸 C.一本数学书 D.一本新华字典
7.要拼成一个从前面、上面看到的图形都是,至少需要( )个。
A.4 B.5 C.6 D.7
8.如图是一个正方体的展开图。每个面上都填有一个数,且相对的两个面上的数互为倒数,那么a的值为( )。
A. B. C.1 D.
9.只看三角形的一个角,( )判断出它是什么三角形。
A.能 B.没有能 C.没有一定能 D.肯定没有能
10.一个圆形池塘如图,老鼠在池塘即圆心O处,猫在岸上点A处。现老鼠在点O沿着半径向点B逃跑,同时,猫从点A沿着箭头方向追。已知猫的速度5米/秒,老鼠的速度1.5米/秒,那么老鼠和猫谁会先到达点B呢?( )
A.老鼠 B.猫 C.一起到达 D.无法判断
第II卷(非选一选)
请点击修改第II卷的文字说明
评卷人
得分
二、判断对错
11.在植树中,种了100棵树,成活了93棵;后来又补种了7棵,全部成活。在这次中,树苗的成活率是。( )
12.一个等腰三角形,已知其中两条边的长度分别是6厘米和12厘米,则这个等腰三角形的周长可能是30厘米,也可能是24厘米。( )
13.一件商品出售时先降价20%,后又提价25%,现价和原价一样。( )
14.若甲×=乙÷=丙×(甲,乙、丙均没有为0),那么最小的是丙。( )
15.一个三位小数,四舍五入到百分位是9.00,这个数最小是8.995。( )
16.甲、乙、丙三人分一箱水果,若按1∶2∶3或3∶2∶5的比分配,则两种分法中,乙分得的一样多。( )
17.小明在教室里的位置可以用数对(5,3)表示,他正前面的一个同学的位置用数对(4,3)表示。( )
18.把一个平行四边形框架拉成一个长方形后,它的面积和周长都变大了。( )
19.两个圆锥的底面半径的比是1∶2,高的比也是1∶2,它们的体积比是1∶4。( )
20.小琪抛一枚质地均匀的硬币,抛了10次,7次正面朝上,3次反面朝上,那么第11次抛硬币,正面朝上的可能性大。( )
评卷人
得分
三、口算和估算
21.直接写出得数。
0.25×3.2= 12.5-2.5×4= = 9.04+0.6=
1÷-÷1= 4÷0.001= ÷= 0.5×=
评卷人
得分
四、脱式计算
22.计算下列各题,怎样算简便就怎样算。
评卷人
得分
五、解方程或比例
23.求未知数x。
评卷人
得分
六、填 空 题
24.下面是一则关于月球的介绍,请你把“384401”、“-183”、“46亿”与“”填入相应的括号内;月球俗称月亮,在距今( )年前就已经存在,它距离地球的平均距离为( )千米;月球的昼夜温度差别很大,白天温度可达150℃,夜晚则降到( )℃;月球引力仅相当于地球引力的( ).
25.中秋节妈妈买了a盒月饼孝敬长辈,每盒75元,付给售货员500元,应找回________元,a的值是________。
26.如图中阴影部分占全长的,是 m。
27.中国农历中的“夏至”是一年中白昼最长、黑夜最短的。这,泰兴的白昼与黑夜时间比是7∶5。这,泰兴的白昼是________小时,白昼时间比黑夜时间长________%。
28.45∶ =10÷8== %。
29.一根绳子如果剪去它的,还剩4米,这根绳子原来长________米;如果这根绳子减去米,还剩________米。
30.用一根长60厘米的铁丝,搭一个长方体框架,搭成的长方体框架的长、宽、高是三个连续的自然数,那么搭成的长方体的体积是________立方厘米。
31.一个三角形三个内角度数比是1∶1∶2,如果其中一个较短的一条边长是5厘米,则这个三角形的面积是( )平方厘米。
32.小明家果园里的枇杷树和杨梅树共有480棵,其中杨梅树的棵数是枇杷树的。枇杷树有________棵,杨梅树有________棵。
33.在一幅比例尺是1∶3000000的地图上,量得A、B两地的距离是5厘米,A、B两地相距________千米。一辆轿车和一辆客车同时从两地相对开出,2小时相遇,轿车每小时行驶45千米,则客车每小时行________千米。
34.将如图1的正方形进行如下操作:第1次,分别连接对边中点,得到如图2的5个正方形;第2次,将图2左上角正方形按上述方法再分割,得到如图3的9个正方形。依此类推,第4次,同样的操作后会得到________个正方形。根据以上操作,若要得到101个正方形,需要操作________次。
评卷人
得分
七、解 答 题
35.下面方格图中每个小方格的边长表示1千米,A点表示餐厅的位置,这个餐厅的送餐广告上显示:本餐厅周边3千米的范围内送餐。
(1)请在图中表示出这个餐厅的送餐范围。
(2)小明家的位置用数对表示是(7,5),小红家的位置用数对表示是(5,9),这个餐厅可以给( )家送餐。(填“小明”或“小红”)
36.如图是一个长4厘米、宽2厘米的长方形。
(1)在长方形中画一条线段,把它分成一个的等腰直角三角形和一个梯形。
(2)这个梯形的面积是 平方厘米。
(3)以等腰直角三角形的一条直角边所在的直线为轴,将三角形旋转一周,可以形成一个 。
37.只列式或方程,没有计算。
王叔叔把20000元年终奖存入银行,定期两年,年利率为2.25%,到期后王叔叔一共可以取回多少元?
38.只列式或方程,没有计算。
眨眼有助于缓解眼睛疲劳,人在正常状态下每分钟眨眼30次,玩手机游戏时眨眼次数比正常状态下减少。玩手机游戏时每分钟眨眼多少次?
39.新冠疫情期间,某消毒液生产厂接到一批消毒液订单。工厂生产一周后,已完成与未完成的数量比为2∶3,如果再生产18吨,那么正好完成这批订单的一半。这批消毒液订单一共有多少吨?
40.根据下图中提供的信息,求出小明和小花各看了多少页?(列方程解答)
41.张师傅要制作一个无盖的圆柱形水桶,用下图所示的长方形铁皮做侧面,要使水桶的容积尽可能大。
(1)应该选用哪张正方形铁皮制作底面?(通过计算说明理由)
(2)这个水桶至多能装水多少升?
42.有64位同学去公园坐船,一共租了12条船,每条大船坐6人,每条小船坐4人,正好坐满。大船和小船各租了多少条?
43.学校环保志愿者对全校师生开展了“分类、从我做起”的抽样问卷,结果分析整理后,制作成以下两张统计图。其中丢行为分为以下几类:
A.能做到分类投放,并能向周边同学宣传分类相关知识。
B.能做到分类投放。
C.能把放桶,但没有注意分类。
D.存在随手乱丢的行为。
请根据以上信息,解答下列问题。
(1)学校环保志愿者共了多少人?
(2)请将条形统计图补充完整。
(3)如果学校共有师生2200人,则存在随手乱丢行为的约有多少人?
参考答案:
1.D
【解析】
【分析】
根据三角形的面积公式:S=ah÷2,那么h=2S÷a,把数据代入公式求出阴影部分三角形的高(梯形的高),再根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答。
【详解】
12×2÷6
=24÷6
=4(厘米)
(8+6)×4÷2
=14×4÷2
=28(平方厘米)
故答案为:D
【点睛】
此题主要考查三角形、梯形面积公式的灵活运用,关键是熟记公式,是求出三角形(梯形)的高。
2.B
【解析】
【分析】
体积相等,底面积相等的圆锥的高是圆柱的高的3倍,又因为原来圆柱和圆锥等底等高,即增加18分米后的圆锥的高是原来圆锥高的3倍,圆锥增加的高除以增加的倍数即可求出原来圆柱的高。
【详解】
18÷(3-1)
=18÷2
=9(分米)
故答案为:B
【点睛】
利用圆柱和圆锥的体积,解题的关键要明确体积相等,底面积相等的圆锥的高是圆柱的高的3倍。
3.B
【解析】
【分析】
含盐率=盐的质量÷盐水质量×。求出加入盐水后的含盐率,再与40%比较即可知道含盐率是上升还是下降。
【详解】
40÷(40+100)×
=40÷140×
≈28.6%
28.6%<40%
故答案为:B
【点睛】
此题属于百分率问题,都是用一部分数量(或全部数量)除以全部数量乘。
4.B
【解析】
【分析】
根据“已知一个数的几分之几是多少,求这个数,用除法”,“已知一个数的百分之几是多少,求这个数,用除法”,设文具价格为1,用除法分别求出二人原有的零花钱即可。
【详解】
设文具价格为1,则:
小刚原有的零花钱:
1÷(1-)
=1÷
=
小军原有的零花钱:
1÷(1-75%)
=1÷0.25
=4
<4
所以小军原有的零花钱多。
故答案为:B。
【点睛】
本题主要考查分数除法以及百分数的应用,需熟练掌握。
5.C
【解析】
【分析】
由题意知:两车相遇时,所用的时间相等,所以速度之比等于路程之比。据此解答。
【详解】
货车行了全程的:
两车速度比∶∶=×==7∶6
故答案为:C
【点睛】
理解速度之比等于两车的路程比是解答本题的关键。
6.C
【解析】
【分析】
根据长方体的特征,以及生活可知,一个物体的长、宽、高分别是26厘米、18厘米、0.7厘米,这个物体可能数学书。据此解答。
【详解】
一个长26厘米、宽18厘米、高0.7厘米的物体,最有可能是数学书。
故答案为:C
【点睛】
解答此题的关键是生活实际,明白1厘米实际有多长。
7.B
【解析】
【分析】
从正面、上面看到的形状都是,则下层有4个小正方体,上层至少1个小正方体,在中间一列2个小正方体的任意一个上面均可。
【详解】
根据分析可知:要拼成符合要求的图形,下层有4个小正方体,上层至少1个小正方体,共需要4+1=5(个)
故答案为:B
【点睛】
本题考查从没有同方向观察物体和几何图形,培养学生的观察能力。
8.A
【解析】
【分析】
根据正方体的平面展开图分析,可知a与2是两个相对的面,再根据题意和倒数的定义:乘积为1两个数互为倒数,据此求解。
【详解】
根据正方体的展开图分析,可知a与2互为倒数,2×=1,所以a是。
故答案为:A
【点睛】
根据正方体展开图的特征找到a所对应的面是解题的关键。
9.C
【解析】
【分析】
如果这个角大于或等于90°,就可以判定是钝角或者直角三角形;如果小于90°,则没有能;进而得出结论。
【详解】
由分析知:只看三角形的一个角,没有一定能判断出它是什么三角形;
故答案为:C
【点睛】
此题考查的是三角形的分类,应根据具体情况进行分析解答。
10.B
【解析】
【分析】
根据圆的周长公式:C=2πr,把数据代入公式求出圆周长的一半,也就是猫需要跑的距离,老鼠跑的距离就是圆的半径,根据时间=路程÷速度,分别求出各自需要的时间,然后进行比较,用时间少的先到达。
【详解】
设圆形水池的半径为r米,则:
(秒)
(秒)
故答案为:B
【点睛】
本题主要考查圆的周长公式的实际应用。解答的关键在于明确时间、路程、速度之间的关系。
11.×
【解析】
【分析】
成活率=成活数量÷总数量,据此计算即可。
【详解】
(93+7)÷(100+7)×
=100÷107×
≈93%
故答案为:×
【点睛】
理解成活率的概念是解答本题的关键。
12.×
【解析】
【分析】
根据三角形的任意两边之和大于第三边,解答此题即可。
【详解】
6+6=12(厘米),根据三角形的三边关系,6厘米的边没有能是腰,只能是底,则这个等腰三角形的腰是12厘米。12+12+6=30(厘米),则这个等腰三角形的周长是30厘米。所以题干说法是错误的。
故答案为:×
【点睛】
熟练掌握三角形的三边关系是解题的关键。
13.√
【解析】
【分析】
一种商品先降价20%,把原价看成单位“1”,降价后是原价的(1-20%),再提价25%,是把降价后的(1-20%)看成单位“1”,现价是原价的(1-20%)×(1+25%),据此解答即可。
【详解】
(1-20%)×(1+25%)
=0.8×1.25
=1
因为1=1,所以现价和原价相等。
故答案为:√
【点睛】
解答此题的关键是先降价20%,再提价25%,两次的单位“1”是没有同的,根据题里的关系解答。
14.×
【解析】
【分析】
将甲×=乙÷=丙×化成甲×=乙×=丙×,再根据积的变化规律判断即可。
【详解】
甲×=乙÷=丙×
甲×=乙×=丙×
<<
最小,所以乙。
故答案为:×
【点睛】
两个非零数的乘积一定时,其中的一个因数越小,则另一个因数越大。
15.√
【解析】
【分析】
要考虑9.00是一个三位小数的近似数,有两种情况:“四舍”得到的9.00是9.004,“五入”得到的9.00最小是8.995,由此解答问题即可。
【详解】
9.00,“五入”得到的9.00最小是8.995,所以原题说确。
故答案为:√
【点睛】
解答本题的关键明确,取一个数的近似数,有两种情况:“四舍”得到的近似数比原数小,“五入”得到的近似数比原数大。
16.×
【解析】
【分析】
由题意知:按1∶2∶3分配就是把这箱苹果平均分成了1+2+3=6份,乙占了2÷6=;按3∶2∶5的比分配就是把这箱苹果平均分成了3+2+5=10份,乙占了2÷10=。据此解答。
【详解】
1+2+3=6(份)
2÷6=
3+2+5=10(份)
2÷10=
>
故原题说法错误。
【点睛】
本题考查了学生按比分配知识的掌握情况。把两种分法中每人得到的分率计算出来是解决本题的关键。
17.×
【解析】
【分析】
根据用数对表示点的位置的方法,个数字表示列数,第二个数字表示行数,可知,小明在教室的位置是第5列,第3行,他前面的同学与他同列,行数减1,据此即可用数对表示出该同学的位置。
【详解】
小明在教室的位置用数对表示是(5,3),他前面的一个同学的位置用数对表示是(5,2)。
故答案为:×
【点睛】
解答本题的依据是数对的意义,要注意灵活应用。
18.×
【解析】
【分析】
把一个平行四边形框架拉成一个长方形,它的底没变,但是高变长了,所以面积变大了,四条边的长度没有变化,所以周长没有变。
【详解】
把一个平行四边形框架拉成一个长方形后,它的面积变大,周长没有变。所以题干说法是错误的。
故答案为:×
【点睛】
解答此题的关键是明白,把一个平行四边形框架拉成一个长方形,它的底没变,但是高变长了,所以面积变大了。
19.×
【解析】
【分析】
根据圆锥的体积公式:底面积×高×;两个圆锥的底面半径比为1∶2;设一个圆锥底面半径为r,高为h;则另一个圆锥底面半径为2r;高的比是1∶2,则另一个圆锥的高为2h,带入圆锥的体积公式,求出两个圆锥的体积,再根据比的意义,求出两个圆锥的体积比。
【详解】
(π×r2×h×)∶[π×(2r)2×2h×]
=πr2h∶[4r2×2h×]
=πr2h∶πr2h
=1∶8
原题干说法错误。
故答案为:×
【点睛】
利用圆锥的体积公式以及比的意义进行解答。
20.×
【解析】
【分析】
一枚硬币只有两个面,任意抛硬币,落地后正面朝上的可能性与反面朝上的可能性始终是相等的,所以无论前面几次的结果如何,第11次抛硬币,正面朝上的可能性与反面朝上的可能性相等。
【详解】
因为任意抛硬币,落地后正面朝上的可能性与反面朝上的可能性始终是相等的,所以“第11次抛硬币,正面朝上的可能性大”的说法错误。
故答案为:×
【点睛】
本题考查可能性大小的判断,解题关键是理解“任意抛硬币,落地后正面朝上的可能性与反面朝上的可能性始终是相等的”。
21.0.8;2.5;0.064;9.64
;4000;;0.2
【解析】
【详解】
略
22.;9;8
4;10
【解析】
【分析】
根据加法交换律和减法的性质进行简算;
根据乘法分配律和加法律进行简算;
根据乘法分配律进行简算;
先算小括号里的减法,再算中括号里的乘法,算括号外的除法;
根据乘法分配律进行简算。
【详解】
=
=
=
9×()-
=9×
=8+()
=8+1
=9
=
=
=
=8
=
=
=4
=
=
=8+6-4
=10
23.;x=20;
【解析】
【分析】
(1)首先根据等式的性质,两边同时减去,然后两边再同时乘即可;
(2)首先化简,然后根据等式的性质,两边同时除以0.75即可;
(3)首先根据比例的基本性质化简,然后根据等式的性质,两边同时乘即可。
【详解】
(1)
解:
(2)x-25%x=15
解:0.75x=15
0.75x÷0.75=15÷0.75
x=20
(3)
解:
24. 46亿 384401 -183
【解析】
【详解】
略
25. (500-75a) 6
【解析】
【分析】
先根据“单价×数量=总价”求得花的钱数,再根据“付出的钱数-花的钱数=找回的钱数”进行解答即可。求a的值,就是求至多买几盒月饼,用500除以75求出的结果用去尾法求值。
【详解】
500-75×a=(500-75a)元
a的值:500÷75=6(盒)50(元),所以a的值是6。
【点睛】
本题主要考查了用字母表示数以及去尾法的应用。
26.;
【解析】
【分析】
把4m看作单位“1”,把它平均分成5份,其中的1份是,再根据一个数乘分数的意义,用4m乘,可以计算出阴影部分的长度。
【详解】
1÷5=
【点睛】
本题考查分数乘法应用题,解题关键是先找出题目中的单位“1”是哪个量,再根据一个数乘分数的意义,列式计算。
27. 14 40
【解析】
【分析】
泰兴的白昼与黑夜时间比是7∶5,把白昼的时间看成7份,黑夜的时间看成5份,先求出白昼时间与黑夜时间的总份数,用24小时除以总份数,求出每份是多少小时,再乘7,即可求出白昼是多少小时;然后用白昼的份数减去黑夜的份数,求出白昼比黑夜长几份,再用长的份数除以黑夜的份数再乘即可求解。
【详解】
白昼的时间看成7份,黑夜的时间看成5份,7+5=12(份)
白昼时间:24÷12×7
=2×7
=14(小时)
白昼时间比黑夜时间长:(7-5)÷5×
=2÷5×
=40%
【点睛】
本题主要考查的是按比例分配,以及求一个数比另一个数多百分之几的问题。
28.36;5;125
【解析】
【分析】
根据分数与除法的关系,10÷8=,将此分数化简是;根据比与分数的关系,=5∶4,再根据比的基本性质比的前、后项都乘9就是45∶36;10÷8=1.25,把1.25的小数点向右移动两位添上百分号就是125%。
【详解】
45∶36=10÷8==125%。
【点睛】
本题主要考查分数与除法、比与分数、比的基本性质、小数转化成百分数等相关知识。
29. 10 9.4
【解析】
【分析】
把这根绳子原来的长看成单位“1”,剪去它的,还剩(1-),已知还剩4米,根据分数除法的意义,用4米除以(1-),就是这根绳子原来的长度;再用这根绳子原来的长度减米,就是还剩的长度。
【详解】
4÷(1-)
=4÷
=10(米)
10-=9.4(米)
【点睛】
此题主要是考查分数除法的意义及应用。已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率。
30.120
【解析】
【分析】
先用棱长总和除以4求出长、宽、高的和,已知长、宽、高是三个连续的自然数,据此求出长、宽、高,再根据长方体的体积公式:V=abh,把数据代入公式解答即可。
【详解】
长、宽、高的和是:60÷4=15(厘米),假设长、宽、高分别是(x+2)厘米,(x+1)厘米和x厘米,则x+2+x+1+x=15,
即:3x=12
x=4
所以长、宽、高分别是6厘米、5厘米、4厘米。
6×5×4=120(立方厘米)
【点睛】
本题主要考查的是长方体棱长和公式和体积公式的灵活运用。
31.12.5
【解析】
【分析】
用三角形的内角和除以4,先求出两个内角的度数,再判断出这个三角形的形状。题意以及三角形的面积公式,求出这个三角形的面积即可。
【详解】
180°÷(1+1+2)
=180°÷4
=45°
45°×2=90°
所以,这是一个直角三角形。并且题意可知,它的直角边是5厘米。
5×5÷2=25(平方厘米)
所以,这个三角形的面积是12.5平方厘米。
【点睛】
本题考查了三角形的面积,三角形的面积等于底乘高除以2。
32. 400 80
【解析】
【分析】
把枇杷树的棵数看成单位“1”,则杨梅的棵数是,两种树的总棵数是(1+),根据分数除法的意义,用480棵除以(1+),就是枇杷树的棵数;再根据分数乘法的意义,用480棵乘(或用两种树的总棵数减枇杷树的棵数),就是杨梅树的棵数。
【详解】
480÷(1+)
=480÷
=400(棵)
400×=80(棵)
【点睛】
此题是考查分数乘、除法的意义及应用。求一个数的几分之几是多少,用这个数乘分率;已知一个数的几分之几是多少,求这个数,用已知数除以它所对应的分率。
33. 150 30
【解析】
【分析】
已知比例尺和图上距离求实际距离,根据图上距离÷比例尺=实际距离,求出实际距离;再根据:路程÷相遇时间=速度和,速度和-甲车速度=乙车速度,解决问题。
【详解】
5÷=15000000(厘米)
15000000厘米=150千米
150÷2-45
=75-45
=30(千米/小时)
【点睛】
此题主要考查比例尺的意义及已知比例尺和图上距离求实际距离,注意单位的换算。
34. 17 25
【解析】
【分析】
第1次得到5个正方形,即4×1+1;
第2次得到9个正方形,即4×2+1;
第3次得到13个正方形,即4×3+1;
……
第n次得到正方形的个数为:4n+1。据此填空。
【详解】
4×4+1
=16+1
=17(个)
4n+1=101
4n=100
n=25
【点睛】
解决本题的关键是发现每多操作就多4个正方形。
35.见详解
【解析】
【分析】
先找到送餐范围,再根据数对找小明、小红家的位置,看谁家在送餐范围内即可。
【详解】
(1)如图所示:
(2)小明家的位置在送餐范围内,小红家没有在,所以这个餐厅可以给(小明)家送餐
【点睛】
本题考查圆的概念、用数对表示位置,解答本题的关键是掌握圆的概念。
36.(1)见详解
(2)6
(3)圆锥
【解析】
【分析】
(1)要把这个长方形分成一个等腰直角三角形和一个梯形,则所画的等腰直角三角形的腰等于长方形的宽,据此画出即可;
(2)通过画图可知,梯形的上底为(4-2)厘米,下底为4厘米,高为2厘米,依据梯形的面积=(上底+下底)×高÷2,即可求得梯形的面积。
(3)圆锥的定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360°而成的曲面所围成的几何体叫做圆锥。因此,以等腰直角三角形的一条直角边所在的直线为轴,将三角形旋转一周,可以形成一个圆锥。
【详解】
(1)如图:
(2)(4-2+4)×2÷2
=6×2÷2
=6(平方厘米)
(3)以等腰直角三角形的一条直角边所在的直线为轴,将三角形旋转一周,可以形成一个圆锥。
【点睛】
掌握等腰直角三角形的特点、梯形面积的求解公式、以及圆锥的定义是解题的关键。
37.20000+20000×2×2.25%
【解析】
【分析】
根据本息和=本金+本金×利率×存期,代入数据解答即可。
【详解】
20000+20000×2×2.25%
=20000+900
=20900(元)
答:到期后王叔叔一共可以取回20900元。
【点睛】
此题属于利息问题,运用关系式:本息=本金+本金×利率×存期,代入数据,解决问题。
38.30×(1-)
【解析】
【分析】
把正常状态下每分钟眨眼次数看作单位“1”,玩手机游戏时眨眼次数比正常状态下减少,也就是正常状态下的(1-),用乘法即可求出玩手机游戏时每分钟眨眼多少次。
【详解】
30×(1-)
=30×0.4
=12(次)
答:玩手机游戏时每分钟眨眼12次。
【点睛】
本题主要考查分数乘法的应用,找准单位“1”是解题的关键。
39.180吨
【解析】
【分析】
已完成与未完成的数量比为2∶3,则已经完成了总数的,如果再生产18吨,那么正好完成这批订单的一半,所以18吨占全部的,根据分数除法的意义,用18吨除以其占全部吨数的分率,即得共有多少吨。
【详解】
18÷()
=18÷(-)
=18÷
=18×10
=180(吨)
答:这批消毒液订单一共有180吨。
【点睛】
解答本题的关键是求出一周生产的消毒液占总量的几分之几以及分数四则混合的应用。
40.小花看了100页,小明看了40页
【解析】
【分析】
本小题主要利用条件信息设未知数列方程。通过小明看的页数是小花的,我们设小花看的页数为页,小明看的页数为页,数量关系:小花看的页数-小明看的页数=60,即。
【详解】
解:设小花看了页,小明看了页。
答:小花看了100页,小明看了40页。
41.(1)边长20厘米的铁皮
(2)6.28升
【解析】
【分析】
(1)根据圆柱侧面展开图的特征,圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,根据圆的周长公式:C=πd,那么d=C÷π,据此求出圆柱的底面直径,然后与四张铁皮进行比较即可解答;
(2)根据圆柱的容积(体积)公式:V=πr2h,把数据代入公式解答。
【详解】
(1)62.8÷3.14=20(厘米)
答:选择边长是20厘米铁皮作这个水桶的底面。
(2)3.14×(62.8÷3.14÷2)2×20
=3.14×100×20
=6280(立方厘米)
=6.28升
答:这个水桶至多能装水6.28升。
【点睛】
本题考查了圆柱的展开图和容积的应用。掌握长方体的长与圆柱的底面周长之间的关系是解题的关键。
42.大船租8条,小船租4条
【解析】
【分析】
假设全部租大船,12条船能坐6×12=72(人),比实际多算了:72-64=8(人),因为把小船看成了大船,每条小船多算了6-4=2(人),所以小船的条数是(8÷2)条,进而求出大船的条数,据此解答即可。
【详解】
假设全部租大船,小船的条数为:
(12×6-64)÷(6-4)
=(72-64)÷2
=8÷2
=4(条)
大船的条数为:12-4=8(条)
答:大船租8条,小船租4条。
【点睛】
此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可。
43.(1)500人
(2)见解析
(3)110人
【解析】
【分析】
(1)把的总人数看作单位“1”,能做到分类投放的有50人,占总人数的10%,用50÷10%,即可求出学校环保志愿者共有多少人;
(2)用学校环保志愿者总人数-能做到分类的投放的人数-能把放桶,但没有注意分类的人数-存在随手乱丢的行为的人数,再补充条形统计图;
(3)再用学校共有师生人数×存在随手乱丢的行为的占5%,即可解答。
【详解】
(1)50÷10%
=50÷0.1
=500(人)
答:学校环保志愿者共了500人。
(2)500-(50+25+25)
=500-(75+25)
=500-100
=400(人)
图如下:
(3)2200×5%=110(人)
答:存在随手乱丢行为的约有110人。
【点睛】
根据已知一个数的百分之几是多少,求这个数,求一个数的百分之几是多少,以及利用扇形统计图和条形统计图的知识进行解答。
【小升初】2022-2023学年北京市顺义区数学六年级下册期末检测卷(A卷)含解析: 这是一份【小升初】2022-2023学年北京市顺义区数学六年级下册期末检测卷(A卷)含解析,共4页。试卷主要包含了选一选,填 空 题,判断对错,解 答 题等内容,欢迎下载使用。
【小升初】2022-2023学年北京市海淀区数学六年级下册期末检测卷(A卷)含解析: 这是一份【小升初】2022-2023学年北京市海淀区数学六年级下册期末检测卷(A卷)含解析,共4页。试卷主要包含了选一选,填 空 题,判断对错,解 答 题等内容,欢迎下载使用。
【小升初】2022-2023学年北京市房山区数学六年级下册期末检测卷(A卷)含解析: 这是一份【小升初】2022-2023学年北京市房山区数学六年级下册期末检测卷(A卷)含解析,共20页。试卷主要包含了请将答案正确填写在答题卡上等内容,欢迎下载使用。